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A b s t r a c t  

Surface curvature along extremal boundaries is potentially useful information for naviga- 
tion, grasping and object identification tasks. Previous theories have shown that qualitative 
information about curvature can be obtained from a static view. Furthermore it is known 
that, for orthographic projection, under planar viewer-motion, quantitative curvature infor- 
mation is available from spatio-temporal derivatives of flow. This theory is extended here to 
arbitrary curvilinear viewer-motion and perspective projection. 

We show that curvatures can actually be computed this way in practice, but that they 
are .highly sensitive to errors in viewer-motion estimates. Intuitively, relative or differential 
measurements of curvature might be far more robust. Rather than measuring the absolute 
deformation of an apparent contour, differential quantities depend on the rate at which 

surface features are swept over an extremal boundary as the viewer moves. It is shown that, 
theoretically, such differential quantities are indeed far less sensitive to uncertainty in viewer- 
motion. Ratios of differential measurements are less sensitive still. In practice sensitivity is 

reduced by about two orders of magnitude. We believe this represents a significant step in 
the development of practical techniques for robust, qualitative 3D vision. 

1 Introduct ion 

The deformation of an apparent  contour (the silhouette of a smooth surface or the image of the 

extremal boundary)  under viewer-motion is a potential ly rich source of geometric information 

for navigation, motion-planning and object-recognition. Barrow and Tenenbaum [Barrow78] 
pointed out that  surface orientation along an extremal boundary can b e  computed directly 

from image data .  Koenderink [Koenderink8~] related the curvature of an apparent  contour 

to  the intr insic curvature of the surface (Gaussian curvature);  the sign of Gaussian curvature 

is equal to  the sign of the curvature of the contour. Convexities, concavities and inflections 

of an apparent  contour indicate, respectively, convex, hyperbolic and parabolic surface points. 

Giblin and Weiss [Giblin87] have extended this by adding viewer motions to obtain quanti tat ive 

estimates of Gaussian and mean curvature. A surface can be reconstructed from the envelope 

of a~] its tangent  planes, which in turn are computed directly from the family of silhouettes of 

the surface, obtained under planar  motion of the viewer. By assuming tha t  the viewer follows 

a great circle of viewer directions around the object they restricted the problem of analysing 

the envelope of tangent  planes (a 2-parameter  family) to the less generaJ one of computing the 

envelope of a family of lines in a plane. Their  algori thm was tested on noise-free, synthetic da ta  

(on the assumption tha t  extremal boundaries had been distinguished from other image contours) 

demonstra t ing the reconstruction of a planar  curve under orthographic projection. 
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This paper extends these theories further, to the general case of arbitrary non-planar camera 

motion under perspective projection. The Gaussian curvature of a surface, at a point on its sil- 

houette, can be computed given some known local motion of the viewer. Curvature is computed 

from spatio-temporal derivatives (up to second order) of image-measurable quantities. The the- 

ory can, of course, be applied to detect extremat boundaries and distinguish them from surface 

markings or discontinuities. Experiments show that,  with adequate viewer-motion calibration, 

itself computed from visual data [Tsai87], it is possible to obtain curvature measurements of 

useful accuracy. 

A consequence of the theory, representing an important  step towards qualitative vision, 

concerns the robustness of relative or differential measurements of curvature at two nearby 

points. Intuitively it is relatively difficult to judge, moving around a smooth, featureless ob- 

ject, whether its silhouette is extremal or not - -  whether the Gaussian curvature along the 

contour is bounded or not. This judgment is much easier to make for objects with feature-rich 

surfaces. Under small viewer-motions, features are "sucked" over the extremal boundary, at 

a rate which depends on surface curvature. Our theory reflects this intuition exactly. It is 

shown that  relative measurements of curvature across two adjacent points are entirely immune 

to uncertainties in the viewer's rotational velocity. This is somewhat related to earlier results 

showing that  relative measurements of this kind are important  for depth measurement from op- 

tic flow [LHigginsSO, WeinshaI189] and for curvature measurements from stereoscopically viewed 

highlights [Blake88]. Furthermore, they are relatively immune to uncertainties in translational 

motion in that, unlike single-point measurements, they are independent of the viewer's acceler- 

ation. 0n ly  dependence on velocity remains. Experiments show that this theoretical prediction 

is borne Out in practice. Differential or relative curvature measurements prove to be more than 

an order of magnitude less sensitive than single:point measurements to errors in viewer-motion 

calibration. There is some theoretical evidence that  ratios of differential curvature measurements 

are less sensitive. In our experiments absolute measurements of curvature were so sensitive that 

they became unreliable for viewer motion errors of 0.5mm in position and lmrad in orientation. 

For ratios of differential measurements of curvature the corresponding figures were about 50ram 

and 70mrad respectively. 

2 T h e o r e t i c a l  f r a m e w o r k  

2.1 Surface  G e o m e t r y  

Consider a point P on the extremal boundary of a smooth, curved surface in R 3 and pa- 

rameterised locally by a vector valued function r(8, t). The parametric representation can be 

considered as covering the surface with 2 families of curves: r(s,  to), and r(80, t) where 80, to are 

fixed for a given curve in the family. A one-parameter family of views is indexed by the time 

parameter t and s, t are defined so that  the s-parameter curve, r(8, to), is an extrema] boundary 

for a particular view to. A t-parameter curve r(s0, t) can be thought of as the 3D locus of points 

grazed by a light-ray from the viewer, under viewer-motion. Such a locus is not uniquely defined. 
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Local surface geometry can be specified in terms of the basis {rs, r~} for the tangent plane 

(r~ and rt denote 9 r /0s  and Or~Or respectively) and the surface normal - a unit vector n. 

2.2 I m a g i n g  m o d e l  

The imaging model is a spherical pin-hole camera of unit radius. The image of the world point, 

P, with position vector r (s , t )  is a unit vector T(s , t )  defined by 

: v(t)  + t), (1) 

where A is the distance along the ray to the point P (figure 1). 

For a given vantage position to the apparent contour is a continuous family of rays T(8, to) 

emanating from the camera's optical centre which touch the surface so that T .n  = 0. The 

moving observer at position v(t) sees a 2 parameter family of apparent contours T(s,  t). 

2.3 P r o p e r t i e s  o f  t h e  e x t r e m a l  boundary and i t s  p r o j e c t i o n  

In [Blake89] we derive for perspective projection the following well-known properties of the 

extremal boundary and its projection [Barrow78, Koenderink82, Brady85, Giblin87]. 

1. The orientation of the surface normal, n, can be recovered by measuring the direction of 

the ray T e f a point on an extremal boundary and the tangent to the apparent (image) 

contour, I s .  
TATs 

n = [T ^ Ts-------~" (2) 

2. The ray direction, T, and the tangent to the extremal boundary, rs, are in conjugate 
directions with respect to the second fundamental form 

T . n .  = 0 (3) 

The ray direction and the extremal boundary will only be perpendicular if the ray T is 

along a principal direction. 

3. The curvature of the apparent contour, nP, (more precisely the geodesic curvature o f  the 

curve, T(s,  to) which can be computed from spatial derivatives in image measurements), 

can be written in terms of the normal curvature of the extremal boundary, ns: 

Tss.n 
,~" = ITs[ 2 (4) 

= a l  (5) 

Equations (4) and (5) shows that an apparent contour is smooth except for a special 

viewing geometry when the ray direction runs along the extremal boundary. At such 

points the apparent contour may have a cusp. For opaque surfaces only one branch of the 

cusp is visible, however, corresponding to a contour-ending [Koenderink82, Koenderink84]. 
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2 .4  C h o i c e  o f  P a r a m e t e r i s a t i o n  

There is no unique spatio-temporal parameterisation of the surface. The mapping between 

extremal boundaries at successive instants is undetermined. The problem of choosing a param- 

eterisation is an "aperture problem" for contours on the spherical perspective image (T( s , t ) )  

or on the Gauss sphere (n(s, t)) ,  or between space curves on the surface r(s , t)) .  A natural 

parameterisation is the "epipolar parameterisation" defined by 

rt ^ T = o. (6) 

For this parameterisation the tangent-plane basis vectors r8 and rt are in conjugate directions 

(from (3)). 
Differentiating (1) with respect to time and enforcing (6) leads to the "matching" condition 1 

Tt = (vt ^ T) ^ T (7) 

Points on different contours are "matched" by moving along great-circles on the image sphere 

with poles defined by the direction of the viewer's instantaneous translational velocity yr. This 

induces a natural correspondence on the surface between extrem~l boundaries from different 

viewpoints. If the motion is linear corresponding points on the image sphere will lie on an 

epipolar great-circle. This is equivalent to Epipolar Plane matching in stereo. For a general 

motion, however, the epipolar structure rotates continuously as the direction of vt changes and 

the space curve, r(s0, t), generated by the movement of a contact point will be non-planar. 

The parameterisation wil lbe degenerate when {rs, rt} falls to form a basis for the tangent 

plane. This occurs if the contour is not an extremal boundary but a 3D rigid space curve (when 

rt = 0) or at a cusp/contour-ending in the projection (when r8 ^ rt = 0, see earlier)[Blake89]. 
The parameterisation degrades gracefully and hence these conditions pose no special problems. 

2.5 I n f o r m a t i o n  a v a i l a b l e  f r o m  t h e  d e f o r m a t i o n  o f  t h e  a p p a r e n t  c o n t o u r  

We show in [Blake89] that  local surface geometry can be recovered from spatio-temporal deriva- 

tives (up to 2nd order) of image measurable quantities and known viewer motion. We summarise 

the most important  results below. 

1. R e c o v e r y  o f  depth  

Depth (distance along the ray, A) can be computed from the rate of cleformation (Tt) 

of the apparent contour under known viewer motion (translational velocity vt)[Bolles87]. 
The depth is given by 

A -- v v n  
T t . n  (S) 

1If we choose the reference frame to be the instantaneous camera co-ordinate system wecan express T and 
T, in terms of an spherical image position vector, Q, and image velocities (optic flow) Q,. Namely T = Q and 
Tt = Qt + w A Q. Equation (7) reduces to the equation of motion and structure from motion from optic flow 
[ Maybank85]. 
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2. 

This formula is an infinitesimal analogue of t r iangulat ion with stereo cameras. The numer- 

a tor  is analogous to baseline and the denominator  to disparity. The result also holds for a 

rigid space curve or an occluding boundary. It is independent  of choice of parameterisat ion 

[ Bl,~ke89]. 

L o c a l  su r face  c u r v a t u r e  

The normal curvature at  P in the direction of the ray T,  g~ (which is the same as the normal 

curvature of the space curve, r(80, t)) can be computed from the rate of deformation (T~) 

of the apparent  contour under viewer motion, and its temporal  derivative. This requires 

knowledge of viewer motion ( t ranslat ional  and rotat ional  velocity and acceleration) 

~;t = (Tt -n)  3 

(Tu.n)(v~.n)  + 2(T.v~)(Tt .n)  2 - (vu.n)(T~.n)  (9) 

The sign and magnitude of Gaussian curvature can then be computed from the product  

of the  normal curvature a t, and the curvature of the apparent  contour, ~P,(measured by 

(4)) scaled by inverse-depth [Koenderink84] 

~p~t 
~ g ~ s s -  ~ (lo) 

3 Exper imenta l  Results:  Determining  curvatures from abso- 

lute measurements  

Figure 2 shows 3 views from a sequence of a scene taken from a camera mounted on a moving 

robot -arm whose motion has been accurately calibrated from visual da ta  [Tsai87]. Using a 

numerical  method for est imating surface curvatures from 3 discrete views (see [Blake89]) we can 

es t imate  the  radius of curvature of the normal section R (where nt = 1/R) for a point  on an 

extremal boundary  of a cup, B. The method is repeated for a point  which is not on an extremal 

boundary but  is a surface marking, A. This is a degenerate case of the parameterisat ion.  A 

surface marking can be considered as the limiting case of a point  with infinite curvature and 

hence ideally will have zero "radius of curvature".  If the measurements are error-ridden and the 

motion is not known accurately, however, surface markings will appear  as extremal  boundaries 

on surfaces with high curvature.  

measured (mm) actual (ram) error (ram) 
surface marking A 1.95 0.0 1.95 
extremal boundary B 45.7 44.4 1.3 

Table 1. l~adius of curvature (of normal section defined by the ray direction) estimated from 3 distinct 
views of a point on a surface marking and a point on an extremal boundary. 

The radius of the cup was measured using calipers as 44.4 ~= 2mm. The est imated curvatures 

agree with the actual  curvatures. However, the results are very sensitive to per turbat ions  in the 

motion parameters  (figure 3a and 3b). 
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4 D i f f e r e n t i a l  m e a s u r e m e n t  o f  c u r v a t u r e  

We have seen that although it is perfectly feasible to compute curvature from the observed 

deformation of an apparent contour, the result is highly sensitive to motion calibration errors. 

This may be acceptable for a moving camera mounted on a precision robot-arm or when a grid 

is in view so that accurate visual calibration can be performed. In such cases it is feasible to 

determine motion to the accuracy of around 1 part in 1000 that  is required. However, when only 

crude estimates of motion are available another strategy is called for. It is sometimes possible in 

such a case to use the crude estimate to bootstrap a more precise visual egomotion computation 

[Harris87]. However this requires an adequate number of identifiable corner features, which 

may not be available in an unstructured environment. Moreover, if the estimate is too crude 

the egomotion computation may fail; it is notoriously ill-conditioned [Tsai84]. 

The alternative approach is to seek qualitative measurements of geometry that  are much less 

sensitive to error in the motion estimate. In this section we show that  relative or differential 

measurements of curvature have just this property. Differences of measurements at two points 

are insensitive to errors in rotation and in translational acceleration. Typically, the two features 

might be one point on an extremal boundary and one fixed surface point. The surface point has 

infinite curvature and therefore acts simply as a stable reference point for the measurement of 

curvature at the extremal boundary. Intuitively the reason for the insensitivity of differential 

curvature is that  global additive errors in motion measurement are cancelled out. 

Consider two visual features whose projections on the image sphere are T(s i , t ) ,  i = 1,2 

which we will abbreviate to T i, i = 1, 2. Think of them as two points on extremal boundaries, 

which trace out curves with (normal) curvatures ~tl and nt2 as the view~er moves. The first 

temporal derivatives of T { are dependent only on image position, viewer velocity and rotation 

and depth: 
T~ = (vt ^ T i) ^ T { 

A (11) 

Second order temporal derivatives are, 

1 [  (T~.n)2 + 2(Ti.vt)(T~.n) _ v~.n]  i = 1,2. (12) T~.n = i ~ 

Let us define two relative quantities. The differential curvature A s  ~ of the feature pair is 

defined by 
1 1 1 

~a ~ = at I at 2. (13) 

Note that it is not an infinitesimal quantity but a difference of inverse curvature. The relative 

view vector is defined to be 

6(t) = T(s2, t) - T(81, t) (14) 

Consider the two features to be instantaneously spatially coincident, that  is, initially, T(s l ,  t) = 

T(82, t). Moreover assume they lie at a common depth )% and hence, instantaneously, T~ = T~. 

In practice, of com'se, the feature pair will only coincide exactly if one of the points is a sur- 

face marking which is instantaneously on the extremal boundary. Now, taking the difference of 
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equation (12) for i = 1, 2 leads to a relation between these two differential  quantities: 

~..n- (vt'n)2 1 
,X3 A~" (15) 

From this equation we can obtain differential curvature A n  t as a function of depth A~ viewer 

velocity vt, and the 2nd temporal derivative of 6. Absolute measurement of curvature (12) 

depended also on the viewer's translational acceleration vs .  Uncertainty from practical mea- 

surements (based on finite differences, for example) of the lower derivative will, of course, be 

much reduced. Hence the relative measurement should be much more robust. Moreover, because 

5 is a relative measurement on the projection sphere, unlike the image vectors T i which occur 

in the absolute measurement of curvature, it is unaffected by errors in viewer rotation. 

In the case that T 1 is known to be a fixed surface reference point, with 1 /~  tl = 0, then 

An t = n ~2 so that the differential curvature An t constitutes an estimate, now much more robust, 

of the normal curvature n t2 at the extremal boundary point T 2. Of course this can now be used 

in equation(10) to obtain a robust estimate of gaussian curvature. 

Our experiments confirm this. Figures 4a and 4b show that  the sensitivity of the differential 

curvature to error in position and rotation computed between points A and B (2 nearby points 

at similar depths) is reduced by an order of magnitude. This is a striking decrease in sensitivity 

even though the features do not coincide exactly as the theory required. 

Further robustness can be obtained by considering the ratio of differential curvatures. Ratios 

of two-point differential curvature measurements are, in theory, completely insensitive to viewer 

motion [Blake89]. This is because in a ratio of An t measurements for two different point- 

pairs, terms depending on absolute depth A and velocity vt are cancelled out in equation (15). 

This result corresponds to the following intuitive idea. The rate at which surface features rush 

towards or away from an extremal boundary is proportional to the (normal) curvature there. The 

constant of proportionality is some function of viewer-motion and depth; it cart be eliminated by 

considering only ratios of curvatures. Results (figures 5a and 5b) show another striking decrease 

in sensitivity - of another order of magnitude. 

5 C o n c l u s i o n  

We conclude that  in theory and practice given just one surface reference point, highly robust 

relative curvature measurements can be made at points on apparent contours. Moreover, the 

technique can achieve by motion analysis something which has so far eluded photometric analysis: 

namely discrimination between fixed surface features and points on extremal boundaries. 
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apparent contour T (s.to) 

/ ~ perspective pro jection sphere 

r (So,to) ........... _'db~o 

extremal boundary r(s,t 0 ) 

Figure 1. Surface and Viewing Geometry. 

P lies on a smooth surface which is parameterised by r(s, 0.  For a given vantage point, v(t0), the 
family of rays emanating from the viewer's optical centre (C) that touch the surface defines an 
s-parameter curve r(s, to) - the extremal boundary from vantage point to. The spherical perspective 
projection of this extremal boundary - the apparent contour, T(s, to) - determines the direction of rays 
which grazes the surface. The distance along each ray, CP, is A. A moving observer at position v(t) sees 
a 2 parameter family of extremal boundaries r(s, t) whose spherical perspective projections are 
represented by a 2 parameter family of apparent contours T(s , t ) .  t-parameter curves (r(s0, ~) and 
T(s0, t)) are not uniquely defined. 

a b c 

Figure 2. Estimating surface curvatures from 3 discrete views 

Points are selected on image contours in view I (a), indicated by crosses A and B for points on a surface 
marking and extremal boundary respectively. For Epipolar parameterisation of the surface 
corresponding features lie on epipolar lines in views 2 and 3 (figures 2b and 2c). Measurement of 3 view 
vectors lying in an epipolar plane can be used to estimate surface curvatures. 
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Figure 3. Sensitivity of curvature estimated from absolute measurements to errors in motion. 
The radius of curvature (ram) for both a point on a surface marking (A) and a point on an extremal 
boundary (B) is plotted against error in the estimate of position (a) and orientation (b) of the camera 
for view 2. The estimation is very sensitive and a perturbation of 1ram in position produces an error of 
19(}% in the estimated radius of'curvature for the point on the extremal boundary, A perturbation of 
lmrad in foliation about an axis defined by the epipolar plane produces an error of 70%. 
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Figure 4. Sensitivity of di]feren~ial curvature 
The difference in radii of curvature between a point on the extremal boundary and the nearby surface 
marking is plotted against error in the position (a) and orientation (b) of the camera for view 2. The 
sensitivity is reduced by an.order of magnitude to 17% per mm error and 8% per mrad error 
respectively. 
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Figure 5. Sensitivit}, of ratio of differential cyrvatures 
The ratio of differential curvatures measurements made between 2 points on an extremal boundary and 
the same nearby surface marking is plotted against error in the position (a) and orientation (b) of the 
camera for view 2. The sensitivity is further reduced by an order of magnitude to 1.5% error for a lmm 
error in position and 1.1% error for hnrad error in rotation. The vertical axes are scaled by the actual 
curvature for comparision with figures 3 and 4, 



474 

R e f e r e n c e s  

[Barrow78] 

[BIake88] 

[BIakeSg] 

[Boltes87] 

[Brady85] 

[ Giblin87] 

[ Harris87] 

[Koenderink82] 

[ K oend erink8 4 ] 

[ LHiggins80] 

[Maybank85] 

[ Tsai84] 

[ TsaisTJ 

[ Weinshat189] 

H.G. Barrow and J.M. Tenenbanm. Recovering Intrinsic Scene Characteristics 
~om Images. A.I Center Technical Report 157, SRI International, 1978. 

A. Blake and G. Brelstaff. Geometry from specularities. In Proc. 2nd Int. Conf. 
on Computer Vision, pages 394-403, 1988. 

A. Blake and R. Cipolla. Robust Estimation of Surface Curvature from Defor- 
mation of Apparent Contours. Technical Report OUEL 1787/89, University of 
Oxford, 1989. 

R.C. Botles, H.tt. Baker, and D.H. Marimont. Epipolar-plane image analysis: an 
approach to determining structure. International Journal of Compater Vision, 
vo1.1:7-55, 1987. 

M. Brady, J. Ponce, A. Yuille, and It Asada. Describing surfaces. Computer 
Graphics Image Processing, 32:1-28, 1985. 

P. Giblin and R. Weiss. Reconstruction of surfaces from profiles. In Proc. 1st 
Int. Conf. on Computer Vision, pages 136-144, London, 1987. 

C.G. Harris. Determination of ego - motion from matched points. In 3rd Alvey 
Vision Conference, pages 189-192, 1987. 

J.J. Koenderink and A.J. Van Doom. The shape of smooth objects and the 
way contours end. Perception, 11:129-137, 1982. 

J.J. Koenderink. What does the occluding contour tell us about solid shape? 
Perception, 13:321-330, 1984. 

H.C. Longuet-Higgins and K. Pradzny. The interpretation of a moving retinal 
image. Proc.R.Soc.Lond., B208:385-397, 1980. 

S.J. Maybank. The angular velocity associated with the optical flow field aris- 
ing from motion through a rigid environment. Proc. Royal Society, London, 
A401:317-326, 1985. 

R.Y. Tsai and T.S. Huang. Uniqueness and estimation of three-dimensional 
motion parameters of a rigid objects with curved surfaces. IEEE Trans. on 
Pattern Analysis and Machine Intelligence, 6(1):13-26, t984. 

R.Y. Tsai. A versatile camera calibration technique for high-accuracy 3d ma- 
chine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal 
of Robotics and Automation, RA-3(4):323-344, 1987. 

D. Weinshall. Direct computation of 31) shape and motion invariants. AI 
Memo 1131, MIT, 1989. 

Acknowledgments 

The authors acknowledge discussions with Professor Mike Brady, Dr Andrew Zisserman, Dr 
Peter Giblin, Dr David Murray and Dr David Forsyth. Roberto Cipolla acknowledges the 
support of the IBM UK Scientific Centre. 


