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I n t r o d u c t i o n  

The analysis of time-varying image sequences is a classical problem of machine vision [1] [5], which 
is likely to be rather useful in several fields, such as robotics and passive navigation. 

In this paper a general approach to the problem is presented, which is based on the computation 
of optical flow obtained by a similar procedure to the one proposed by Girosi et al. [2]. By exploiting 
mathematical properties of the 2D motion field [6] several 3D motion parameters, such as time-to- 
collision and angular velocity, can be recovered with a precision which is dependent on the image 
texture. 

T he  C o m p u t a t i o n  of  Opt ical  F low 

When an opaque object is moving in front of an artificial or a biological eye, it defines (in an 
appropriate system of reference, possibly solid to the image plane of the eye) a 3D velocity field 
IV(R) --- (V~, Vv, Vz) where/~ = (R~, Rv, Rz). Because of the imaging device the 3D velocity field 
17 is transformed into a 2D motion field g -- (vz,vv) on the image plane [4] [6]. The available 
information, however, is not the 2D motion field 0' but the scalar field E(x,y , t )  of the image 
brightness at location (x, y) on the image plane at time t. By optical flow we mean any 2D 
vector field derived from E(x, y, t) which is close to the 2D motion field g -- (v~, vv). It is therefore 
evident that many different optical flows exist each of which has different properties and behaviour, 
according to the computing algorithm and the closeness criteria. It has recently been shown [2] 

d 
that by assuming ~ grad E -- 0 it is possible to obtain an optical flow ~7 --- (u~, uy) computed as: 

g = _ H _  1 0 ~-~ grad Z (1) 

0 2 E  . 
where H -- ( ~ )  is the Hessian matrix of E(x, y, t) and g is related to the 2D velocity field 0', 

by the equation: 

g = 0 ' +  H -1 ( J / . g r a d  E - g r a d  dE)  ~t (2) 
dE 

where jT is the transpose of the Jacobian matrix ( ~ )  of ~ and --~ is the total derivative of 

the image brightness E(x,y , t ) .  Equation (2), which is just an identity, shows that the optical 
flow computed from equation (1) usually differs from the true 2D motion field, but also indicates 

dE 
that, when --~ and jT  are bounded, the optical flow g will approach the true 2D motion field 

dE 
g whenever the entries of the matrix H -1 are small. Since - ~  and jT are likely to be usually 

bounded, with the exception of those points near object boundaries or motion discontinuities, we 
can determine whether the computed optical flow g is close to 0' by simply evaluating H -1. It is 
evident that the entries of H -1 will be small whenever the two real eigenvalues )~1 and ~2 of the 
symmetric matrix H are large. 
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An inspection of equation (1), from which the optical flow is derived, shows that  numerical 
stability of the computation of optical flow is guaranteed whenever the inversion of the matrix H 
is numerically stable. This condition is fulfilled when det H is large and the conditioning number 
cH of H is close to 1 [3]. Since the matrix H is symmetric, we have that  cH = I)`1/),21 where 
),1 and )`2 are the two real eigenvalues of H with largest and smallest absolute value respectively. 
Consequently, it is evident that  det H large and cR --~ 1 imply both numerical stability in the 
computation of g and similarity between optical flow q and 2D motion field ~'. As a result when 
det H is large and CH N 1 an optical flow is obtained, which is numerically stable and almost 
correct (i.e. close to the true 2D motion field). 

T h e  R e c o v e r y  of  M o t i o n  P a r a m e t e r s  

The obvious test of any procedure for motion analysis is the comparison between 3D motion 
parameters directly measured with those recovered from the analysis of the image sequence. Here 
we discuss the recovery of 3D motion parameters in two special, but practically relevant cases: 
pure translation (Fig. 1) and pure rotation (Fig. 2). 

It has been shown [6] that  in the case of pure translation the 2D motion field has at most 
one singular point, which is a focus and does not change its location on the image plane with 
time. Moreover if PT is the singular point the time-to-collision between the image plane and the 
point projected into PT is simply 1/)`, where )` is the value of the two coincident eigenvalues of J~ 
computed at PT. In the case of a pure axial rotation, that  is when the rotation axis is orthogonal 
to the 3D surface, the angular velocity w can be obtained from 

w 2 = det J~Ip R (3) 

where PR is the immobile point of the pure rotation [6] which is a center. 
By using the sparse optical flow obtained from eq. 1 it is possible to locate the singular point 

P = (2, ~3) and to analyse the na ture  of the singular point by estimating the 6 parameters ~, 9, a, b, e 
and d, such that  

u~, =- a(x  - ~,) -t- b(y - ~t) 

,,~ = c ( ~ -  ~) + d ( y  - ~) 

represents the least square approximation of the flow in a suitable neighbourhood of P.  
In the case of a pure translation we expect b and e to be negligible and the values of a and d 

to be very similar, whereas for axial motion a and d close to zero and b and c opposite in sign. 
An extensive experimentation on sequences of images of different objects has shown that  an 

accuracy of about 95 % can be obtained in the special case of a highly textured plane parallel to the 
image plane. This configuration, which is optimal from a theoretical point of view (the 2D motion 
field becomes linear), also proved experimentally to be the most favourable. For scenes with little 
texture and strongly departing from a planar structure, the agreement between computed and 
directly measured 3D motion parameters deteriorates and may become poorer. 

We conclude that  the proposed technique for the analysis of image sequence is suitable for the 
vision system of a mobile robot, and for many industrial applications. 
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Fig.  1: Pure translation. A: An image of a photograph of two climbers. The image sequence was 
composed of 44 frames. The camera was slid on the rail of an optical bench by I cm between each 
image acquisition. B: The sparse optical flow relative to the image 15 of the sequence by solving eq. 
1. C: The localization of the focus of expansion. The focal length of the camera was 8 mm and the 
width of a pixel was 0.014 mm so an angular displacement of i degree corresponds to a displacement 
on the image plane of about 10 pixels. D: Comparison between the true time-to-collision (straight 
line) and the computed time-to-collision (polygonal line). 
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Fig.  2: Pure rotation. The image sequence was composed of 50 frames. The camera was 

viewing from above and pointing towards a rotating platform, on which different objects were 
mounted. The platform was rotated by 5 degrees between each frame. B: The smoothed optical 
flow. C: The localization of the ~mob i l e  point (i.e. the singular point). D: Comparison between 
the true (straight line) and the computed (polygonal line) angular velocity. 


