
T h e N a t u r a l D y n a m i c S e m a n t i c s of M i n i - S t a n d a r d M L

Dominique Clgment

SEMA-METRA

INRIA $OPHIA-ANTIPOLIS

Rue Emile Hugues, 06560 Valbonne/France

Abstract

We describe how to express the dynamic semantics of a small subset of the Standard ML language in

Natural Semantics. The present specification is based on a communication of R.Milner that describes

the dynamic semantics of Standard ML in a structural style, and can be viewed as an example of the

"programming effort" that is necessary to obtain an executable version of such a specification. The main

aspects of Natural Semantics covered concern its relationships with typed inference systems and with some

properties of natural deduction. The description has been tested on a computer but we do not give here

details on the compilation techniques.

1. Introduction

The use of inference systems to specify the static and dynamic semantics of programming languages

has its origin in the presentation of semantics in a structural axiomatic style in Plotkin[15]. For example,

to express that a "phrase P evaluates to a value a in an environment e" we can write a formal sentence of

the form:

c I - P : a

where the evaluation predicate ":" is defined by a set of axioms and inference rules. Such a system formally

defines the sound phrases (with respect to dynamic semantics) of a programming language as those tha t

can be inferred from the system. In other words, the evaluation of a phrase P to a value a is defined by

the existence of a derivation tree for e F- P : a.

Natural Semantics is a specification formalism originating in Plotkin's structural semantics but with

flavors of Gentzen's natural deduction[3], [10]. A specification in Natural Semantics is defined by inference

rules involving several judgements. For dynamic semantics judgements are generally of the form e t- P : a ,

meaning tha t the term P has value a in context e. Then it is possible to prove formal properties of these

specifications: Natural Semantics has be used to prove the correctness of translations[6] for the central

part of the ML language.

But beside this purely descriptive aspect, a key question of interest is the use of logical systems

as executable specification formalisms. Natural semantics is one such executable specification formalism.

Specifications are written in Typol[7], a language tha t implements Natural Semantics, and compiled to

produce typecheckers, interpreters, and translators[4].

In this paper we present the natural dynamic semantics of Standard ML, or more exactly of a subset

of Standard ML. As pointed out by Milner[12] the design of Standard ML is based on simple and well

understood ideas tha t have been experimented with in previous versions of ML or in other functional

languages. Furthermore Milner gives a formal definition of the dynamic semantics of core Standard ML[13]

This work is partially supported under ESPRIT, Project 348

68

in a structural axiomatic style. Hence we have the opportunity to use Natural Semantics on a completely

specified language.

In the next section we present the mMn aspects of Natural Semantics that we use to specify the

dynamic semantics of ML. Then we describe the subset of Standard ML used in the sequel of this paper

together with the relevant semantic domains. In the following two sections we discuss two aspects of ML,

namely exceptions and pattern matching~ that need special attention. The first one is a direct application

of the notion of judgements, while the second one is also related to the specification of negation within

inference rules. Finally we give the semantics of expressions, followed by all rules that are necessary to

complete the specification of the dynamic semantics of our subset of Standard ML.

2. N a t u r a l Seman t i c s

A specification in Natural Semantics is an inference system, i.e. a collection of inference rules that

have the following form:
hypotheses
conclusion

where both hypotheses and conclusion are of the form F ~- term : c~, where F is a set of hypothesis oi1,

at least, the variables of term. In such a formula~ which is called a sequent, the context F~ the subject

term, and the value c~ are abstract trees that belong to a finite system of types called an abstract syntax

definition. The identification of Natural Semantics objects with abstract syntax trees is a central aspect

of this formalism.

First this identification implies that the tree terms used within Natural Semantics act as type construc-

tors. Next this identification implies that every variable in Natural Semantics, also called meta-varlable,

stands for values that belong to some abstract syntax definition. In other words the meta-variables of a

specification in Natural Semantics are typed. We illustrate these two aspects on simple examples.

2.1. Terms are t ype c o n s t r u c t o r s

An abstract syntax is defined by a system of types with sorts, subsorts, and functions. The notion of

subsorts is used to express containment relations between sorts.

Consider the system of types with two sorts VAR and EXP~ with the relation VAR ~ EXP to express that

a variable is also an expression, and with two functions: vat :--~ VAR and application : EXP >~ EXP --~ EXP.

In this system of types a tree term such as application(varF, varX) is of type EXP, while the two subtrees

varF and varX are of type VAR. Hence in a sequent of the form F ~- applieation(varF, varX) : a, the

subject stands for applications where the operator and the operand are both restricted to be object language

variables.

Now consider the term application(OPERATOR~ OPERAND)~ where OPERATOR and OPERAND are meta-

variables. This term is of type EXP if and only if the two variables OPERATOR and OPERAND are of type

EXP. In the sequent I" [- application(OPERATOR, OPERAND) : Or, the subject now stands for applications

where both the operator and the operand are general expressions. This means in particular that the values

of these two variables must be tree terms that belong to the sort EXP (or to subsorts of t~XP, such as the

sort YAR),

Hence the abstract syntax tree terms used within Natural Semantics act as type constructors. Fur-

thermore the meta-variables that occur strictly within a tree term are implicitely typed by an abstract

69

syntax definition. In fact every meta-variable within a specification in Natural Semantics is typed, and

this typing is of primary importance for the style of Natural Semantics specifications, as we explain now.

2.2. Var i ab les are t y p e d

As in other first order logic languages, a variable in Natural Semantics is used to impose equality

constraints among subterms or to share information between different objects. But a variable occurrence

in a Natural Semantic inference rule also expresses a constraint on the values that can be substituted to

that variable.

Consider the following rule that could be used to specify the evaluation of an ML expression when it

is reduced to an ML variable:

e ~ ~: ~ (e(x) = ~)

Assume that the variable e denotes an environment that is a mapping of ML variables to ML values, and

that the variable c~ denotes an ML value. Now to express that this rule is restricted to ML variables,

i.e. on tree terms of the form vat X~ the meta-variable x must be declared of type VAR. Without such a

containment on the values of the meta-variable x, any ML expression could be substituted to x.

Hence a meta-variable in Natural Semantics can be used as an instantiation filter to restrict the domain

of validity of an inference rule. But this filtering on the values of meta-variables is directly computed from

the abstract syntax definitions. Define the phylum associated to a sort as the set of functions obtained

from the partial order defined by the subsort relations. With our example of system of types with two

sorts VAR and EXP, the phylum associated to the sort VAR is reduced to the set (var}, while the phylum

associated to the sort EXP is the set ~var, application}. Then a meta-variable of type S denotes a variable

that can only be substituted by a term whose root symbol belongs to the phylum P identified with type S,

i.e. it is equivalent to an untyped variable v that satisfies a boolean predicate of the form v E P.

The typing of meta-variables presented here provides a nice modularization mechanism for Natural

Semantics specifications. In particular the type information on meta-variables can be used to distinguish

rules that express different evaluations of the same construct of a programming language. As we shall see

later, this situation is central in the specification of the dynamic semantics of Standard ML because of

the ML exception mechanism. Note that this typing is essentially a matter of style. For instance in the

example above, it is possible to use the tree term vat x instead of the meta-variable x to restrict the use

of the inference rule to ML variables. More generally any inference rule with type information can also be

expressed as an inference rule without type information but with auxiliary boolean predicates.

3. A b s t r a c t S y n t a x e s

The Standard ML language defined in [12] is a quite complete functional programming language, even

without Input/Output primitives nor Modules for separate compilation. For the purpose of this paper we

only consider a subset of the Core language that includes the most relevant features of Standard ML in

the context of their specification in Natural Semantics. A complete specification of the dynamic semantics

of the full Standard ML language has also been done[5].

From Standard ML we keep the following constructs:

-t- Declarations: value and exception declarations using value bindings and exception bindings,

÷ Expressions: application, raising and handling exceptions, and function abstraction,

70

+ Patterns: to create value bindings by pat tern matching.

but we omit the following:

- type~ datatype, abstract datatype declarations, and type expressions (all of them are relevant of static

semantics),

- local declarations, bo th in declarations (using local) and in expressions (using let) ,

- sequences in value bindings and exception bindings,

- recursive value bindings,

- labelled records and the layered pat tern construct,

- side-effect constructs, i.e. references and assignment.

3.1. A b s t r a c t S y n t a x of Core M i n i - M L

The principal syntax classes of our Mini-Standard ML language are defined in terms of the three

disjoint primitive classes given in Figure 1.

s o r t s VAR, CON, EXN

f u n c t i o n s
v a t : -'~

con :

e x n :

VAR value variables

CON value constructors

--* EXN exception names

Figure 1. Primitive Classes

An exception name is always completely determined by its occurrence in abstract syntax trees. But

this is not true for value variables and value constructors for which the scope of datatype bindings must be

taken into account. We assume that any ambiguity on the class of an identifier has been solved (by a type-

checker for example), i.e. we assume in the following that ML abstract syntax trees are always well formed.

Examples of value constructors are: booleans true and false, list constant niland list constructor ":: ' . Value

variables occur in value bindings such as "x = 1".

The abstract syntax of declarations, value and exception bindings, patterns, and expressions is given

in Figure 2.

The purpose of declarations is to bind identifiers to values. Value bindings axe used to declare value

variables while exception bindings are used to declare exceptions. An exception binding is either a simple

exception binding or an exception name: the sort EXN is a subsort of the sort EXCBIND.

Pat terns are linear terms containing only variables and value constructors. In our subset of Standard

ML the unique compound pat tern is the construction of the form "con pal'. Finally, atomic expressions are

value variables and value constructors (see the subsort section). Compound expressions are the function

abstraction fun, the application exp ezp ~, raising exceptions with ra i se , and handling exceptions with

hand l e .

71

s o r t s DEC

f u n c t i o n s
val

exception

: VALBIND

: EXOBIND

s o r t s VALBIND

f u n c t i o n s

simple_value :

~Declarations"

-~ DEC

-~ DEC

~Value Bindings ~

PAT×EXP ~ VALBIND

"Exception Bindings"

s o r t s EXCBIND

s u b s o r t s EXN -< EXCBIND

f u n c t i o n s

simple_excbind :

va l valbind

e x c e p t i o n excbind

EXN×EXN --* EXCBIND

"Patterns"

s o r t s PAT

s n b s o r t s (¥AR, CON) ~ PAT

f u n c t i o n s

construction

pat = exp

: CON×PAT --+ PAT con pat

~Expressions"

e x n ~'z. e x n !

s o r t s EXP~ MATCH~ MRULE~ HANDLER~ HRULE

s u b s o r t s (VARyCON) -~ EXP

f u n c t i o n s

fun : MATCH -~ EXP f u n match

application : EXP XEXP -~ EXP exp exp ~

raise : EXNXEXP -~ EXP r a i s e exn w i t h exp

handle : EXP×HANDLER -~ EXP exp h a n d l e handler

match : MRULE + -~ MATCH mrulel 1 . . . I mrulen

mrule : PATxEXP -~ MRULE pat ~ ezp

handler : HRULE + -~ HANDLER hrulel II "'" II hruIe,

with : EXN×MATCH -* HRULE ezn w i t h match

3 . 2 .

Figure 2. Abstract Syntax of ML

A b s t r a c t S y n t a x e s o f S e m a n t i c d o m a i n s

Now we need to define semantic domains such as the domain of values VAL and the environment

domain ENV. To define the abstract syntaxes of these domains we will need four sorts of the abstract

syntax definition of Mini Standard ML: the sort MATCH, the sort CON, the sort VAR, and the sort EXN.

All these sorts are imported. This means tha t we import the language defined by the reflexive closure of

each one of these four sorts.

The abstract syntax of values is given in Figure 3. A function value is a partial function represented

as a c losu re . A closure is a pair of a function body, i.e. an ML match match, and of an environment e.

72

T h e value of a cons t ruc to r is t h a t value const ructor , the sor t OON is a subsor t of VAL, and a construct ion

value is a product of a value cons t ruc tor and of an M L value. Following Milner, basic funct ions such as

"+" and " - " are defined as members of the sort BASFUN, which is a subsor t of VAL. Bu t for each basic

funct ion f in BASFUN, a p p l y (f , c~) denotes the resul t of applying f to a value c~. Such part ial funct ions

are m e m b e r s of the sort APPLY.

s o r t s VAL, BASFUN~ APPLY

s u b s o r t s (CON, BASFUN, APPLY) -~ VAL

f u n c t i o n s
closure : MATCH×ENV --~ VAL ~match, e 1

prod : OONXVAL -~ VAL (e0n~ val)

apply : BASFUN×VAL -~ APPLY f (va l)

Figure 3. Values

To associate values to ML variables and exceptions to ML exception names we use an e n v i r o n m e n t

defined by the abs t rac t s y n t a x given in figure 4. This envi ronment is a list of pairs.

s o r t s ENV~ PAIR~ VAR_PAIR~ EXN_PAIR

s n b s o r t s (VAR_PAIR, EXN_PAIR) -~ PAIR

f u n c t i o n s

var_palr : VAR×VAL -+ VAR_PAIR ~ar ~ val

exn_pair : EXNxEXC ---* EXN_PAIR ezn ~* exc

env : PAIR* ---* ENV envi ronment e

Figure 4. Env i ronments

An e x c e p t i o n is an object t ha t belongs to the sor t EXO and to which an exception name ezn may be

associated. The na tu re of an exception is immater ia l . A p a c k e t is a pair of an exception and an %xcepted"

value~ and it is the unique opera tor of the sort PACK. Neither exceptions nor packets are values. Finally

the s ingleton sort FAIL denotes failure (Figure 5).

s o r t s gXC, PACK~ FAIL

f u n c t i o n s

pack : EXOXVAL --~ PACK packet pack or <exc, val>

exc : ---* EXC exception ezc

fail : ~ FAIL failure fai l

Figure 5. Packets , Except ions, and Fail

3.3. E n v i r o n m e n t a s c o n t e x t

Final ly we need to define the man ipu la t ion pr imit ives on the env i ronment domain ENV. A first

possibil i ty is to give a funct ional definition of these envi ronment man ipu la t i on pr imit ives , as Milner does

in I13]. Firs t the env i ronment is defined as the p roduc t of a value env i ronment ve and of an exception

env i ronment ee. Each c o m p o n e n t of an env i ronment is considered as a member of M A P (S , $I), the set of

finite par t ia l func t ions f rom a set S to a set S t. The basic operat ions on mapp ings are defined as follows:

73

P r i m i t i v e s o n m a p p i n g s .

i) I f m belongs to M A P (X , Y) then

m (x) = y ~ (x,y) e m

ii) For two maps m and m' , the map m + rn' is defined by:

m + , Z (z) = f m ' (z) f i r e ' (z) is defined,
[m(~) otherwise.

Then environment primitives are defined in terms of these basic operations with the help of some

notat ions: if e = (re, ee) and e' = (re', ee') then e + e' denotes (re + re ' , ee + ee'); fur thermore e-}-re '

denotes (re + re', ee) and e + ee' denotes (ve, ee + ee').

Although such a functional definition of environment manipulat ions is perfectly meaningful, it is

possible to give another definition tha t is more in the style of Natural Semantics. First the environment e

is considered as a list of propositions of the form x : 5 or ezn : eze, where the meta-variables x, a, ezn, and

exe denote respectively an ML variable, an ML value, an ML exception name, and an exception. PAIR* is

the set of finite sequences of such propositions. We write an empty sequence "[]" (the empty environment)

and e[x : a] the sequence obtained from the sequence e by adding one more assumption [10]. Then to took
vM -of

for the value associated to an ML variable x in an environment e, we define the sequent F- as follows:

se t V A L _ O F is

e[x: 51 ~ x : 5 (1)

e ~ x : 5

e[y :~] i- z : 5
(u # ~) (2)

e b - z : a
e[exn : exc] I- z : 5

(3)

e n d V A L _ O F ;

Rule 1 is very similar to the tautology z : 5 b z : a , while rule 2 is akin of the thinning rule in Natural

Deduction. The th i rd rule is necessary to skip assumptions on exception names. To look for the exception
exc-of

associated to an exception name ezn, we use the sequent t- , tha t is defined wi th the same kind of

rules. The role of the environment in natural semantics is now quite explicit: it is the contezt~ i.e. a set

of hypothesises on identifiers, necessary to derive the value of a phrase. Note that we assume here that

the environment contains at least one assumption on all free identifiers, ML variables and ML exception

names, of the ML te rm tha t is evaluated. This consistency property should be proved as a lemma satisfied

by well typed ML programs.

74

4. S p e c i f i c a t i o n o f E x c e p t i o n s

T h e principle followed by Milner[13] to specify the dynamic semant ics of S tandard ML is to define an

evaluation relat ion ~'=~" wi th inference rules, called evaluation rules, of the form:

el [- P1 =¢> r l • • • e~ ~- Pr~ :==> rn

e [-- P =:# r

A formal sentence such as e ~- 1 • ::> r expresses tha t , in a given envi ronment e, the phrase P evaluates

to a resul t r. Of course the na tu re of r depends on the syn tax class of P. For example the result r is

an env i ronment when P is an ML declarat ion, b u t it is an ML va.lue when p is an ML expression. So

the evaluat ion of S t anda rd ML is formally defined by an inference sys tem, f rom which sentences may be

inferred.

T h e n it is necessary to specify the exception m e c h a n i sm of S tandard ML, which is defined by the

following principle of except ion propagation[12]: whenever a sub-phrase evaluates to a packet then no

fur ther sub-evaluat ions occur and the exception is propagated, i.e. the packet is also the resul t of the main

phrase. This is achieve by adding, for every evaluat ion rule, n fur ther rules, one for each k wi th 1 < k < n,

called packet p ropaga t ion rules. Generally packet propagat ion rules for a t e rm P are of the form:

el ~- Pl ~ rl " " ek ~- P~ ~ pack

e k- P ~ pack

where the variables rl, wi th 1 < i < k - 1, are not packets.

In Natura l Semant ics we follow the same kind of approach, bu t we consider t ha t the dynamic semant ics

of S tandard ML is defined wi th different judgements on ML terms. First , we define the evaluat ion of ML

phrases wi th j u d g e m e n t s of the form e ~- P : r where the resul t r is no t a packet. T h e n we specify exceptions

of S t anda rd ML wi th j u d g e m e n t s of the form e ~- P : p where p can only be a packet.

For example the d y n a m i c semant ics of Mini -ML declarat ions is defined by the judgement :

e]- DEC : e ~

where bo th c and e t are of type ENV. Then~ because a declarat ion may evaluate to a packet, we define

ano ther j udgemen t :

c ~- DEC : pack

where the variable pack is of type PACK. Now the exception propaga t ion m e c h a n i s m of S t anda rd ML can

be defined as transition rules between these different kinds of judgements .

As a smM1 digression, we would like to indicate how the type cons t ruc tor in terpre ta t ion of abs t ract

t e rms is used to make our specification executable. Consider our j udgemen t s as t e rnary predicates "_ ~-

_ : 2 ' , one for each form of judgemen t s , t h a t belong to a meta - sys tem: such predicates can be evaluated

wi th in the m e t a - s y s t e m in a Prolog like manner . Now the opera tor % F- _ : _" is heavily overloaded, and

to execute these predicates in the m e t a - s y s t e m it is necessary to solve this overloading (this is one of the

purposes of the compiler of Natura l Semant ics specifications). Th i s is ~w~hieved by comput ing the type

of each predicate f rom the abs t rac t syn tax defini t ions of the object te rms. Note tha t , to avoid such an

overloading: we could have defined two syntac t ica ly different j udgemen t s , one of the form e k- P : r, the

o ther of the form e ~- P :: pack. W i t h this approach exception p ropaga t ion rules are coercion rules between

75

these judgements . B u t we prefer to use the type informat ion on meta-var iabtes to d is t inguish judgements

on t e r m s t h a t belong to the same sort , bu t on disjoint semant ic domains .

We re tu rn now to the specification of exceptions. For Min i -S tandard ML we have the following types

for our j udgemen t s , classified according to the syntac t ic na tu re of the subject P:

1) d e c l a r a t i o n s : e F- DEC : e of type BNV x DEC × ENV and e I- DEC : pack of type ENV × DEC × PACK,

2) v a l u e b i n d i n g s : e ~- VALBIND : e I of type ENV × VALBIND × ENV and e F- VALBIND : pack of type

ENV × VALBIND × PACK,

3) e x c e p t i o n b i n d i n g s : e }- EXGBIND : e I of type ENV X EXGBIND × ENV,

4) e x p r e s s i o n s : e b- EXP : ce of type ENV x EXP × VAL and e }- EXP : pack of type ENV x EXP × PACK.

To i l lus t ra te our approach, consider Mini -S tandard ML declarat ions. Fi rs t we define the j udgemen t

e b- D~C : e ' , F igure 6. This j u d g e m e n t corresponds to the normal evaluat ion of an ML declaration.

e k VALBIND : e' (1)
e ~ val VALBIND : e t

e ~- EXGBIND : e I

e]- exception EXCBIND : e I (2)

Figure 6. Evalua t ing a Declarat ion

The evaluat ion of a value declarat ion and of an exception declarat ion, rules 1 and 2, are expressed

in t e r m s of the evaluat ion of their bindings, respectively value binding and exception binding. They bo th

evaluates to an env i ronment e'. T h e n we define the j u d g e m e n t e }- DEC : pack of type ENV × DEC X PACK for

exceptions, Figure 7. It is only necessary to add a rule because ML exception declarat ions never evaluate

to a packet.

e }- VALBIND : pack
e }- val VALBIND : pack

Figure 7. Except ion in Declarat ions

(3)

5. S p e c i f i c a t i o n o f P a t t e r n - m a t c h i n g

Ano the r in teres t ing aspect of the dynamic semant ics of S tandard ML is the use of the same mechan i sm

for value b indings in value declarat ions, v a l x -- 1, pa rame te r b indings in applicat ions, (f u n match) e, and

exception handl ings , exuwlthmatch. This is achieved wi th a pa t t e rn -ma tch ing m e c h a n i s m between ML

pa t t e rns and ML values. For example a condit ional expression i f el t h e n e2 e l se es is equivalent to the

following application:
(f u n tr~e=~") e l e 2

false =~ es

where true ~ e2 and false ~ ea are the so-called mrules of the match .

Given a p a t t e r n PAT and an ML value a the first purpose of ML ma tch ing is to act as a filter between

the s t ruc tu re of the p a t t e r n and the s t ruc ture of the value. The second purpose of ML ma tch ing is to

76

bind the ML variables that occur in the pattern with ML values. Furthermore ML pattern matching is

independent of the environment. Hence it is possible to describe the ML pattern-matching mechanism

with a judgement b- PAT, o~ : e of type PAT × VAL × ENV. For our subset of Standard ML, this judgement

is defined by the rules given in Figure 8.

x , ~ : Ix: ~] (i)

F- c o n , c o n : ¢ (2)

~- eAT, VAL : e (3)

k CON PAT, (CON, VAL) : e

Figure 8. Matching a Pattern to a Value

The rule 1 shows the binding facet of ML pattern matching: an ML variable matches any value and

the environment Ix : a] is built. A value constructor matches only with the same value constructor, and

no environment is built, rule 2. Finally the rule 3 specifies the matching of a construction with a product

value. Both must have the same constructor as first component, then pattern-matching is recursiveIy

applied to their second components.

But this judgement only describes valid pattern matchings, i.e. matchings that do not fail. Indeed as a

filter the matching fails for some pairs of patterns and values. Rather informally the ML pattern-matching

fails when no proof tree can be obtained from the previous system. In some sense we are faced with the

well known problem of negation in inference rules. To solve the difficulty we propose a solution based on

rules conditioned by boolean predicates.

We define another form of judgement l- PAT~ ~ : fail, of type PAT x VAL x FAIL, by the rules of Figure 9.

Basicaly the ML pattern-matching only fails for incompatible pairs of ML pattern and of ML value. Note

that an ML variable matches with any value: this matching never fails. For an ML constructor, the

matching fails for every ML value that is not "equal" to this constructor, rule 4. Rule 5 expresses the

same kind of condition for an ML construction. But there is another case of failure for ML constructions

because the matching of the pattern PAT and of the value VAL may fails, rule 6.

F- con, val : fai l (val 7 ~ con)

k- con PAT, val : fa i l (v a I ¢ (CON, VAL))

~- r,A% VAL : fa i l
CON PAT, (OON, VAL) : fa i l

(6)

Figure 9. Failure of ML Matching

Remark: the rules that describe normal evaluation and exception propagation are sometimes rather

similar. Consider the two rules I and 3 for declarations, figures 6 and 7, and the two rules 3 and 6 for

expressions, figures 8 and 9. With some loss in modularity, it is possible to merge these rules as foltows:

e ~ VALBIND : ep ~- PAT, VAL : e f

e ~- val VALBIND : ep ~- CON PAT, (OON~ VAL) : e f

77

where the meta-variables ep and ef are respectively of type ENV U PACK and ENV U FAIL. But now we have

two new judgements of type ENV x DEG × (ENV tO PACK) and PAT × VAL x (ENV tO FAIL). This technique

can be used for the purpose of concision.

6. S p e c i f i c a t i o n o f E x p r e s s i o n s a n d other c l a s s e s

To complete the specification of the dynamic semantics of our subset of Standard ML we have to

define judgements on matches, handlers, value bindings, exception bindings, and expressions. But all

these specifications are done wi th the approach presented on ML declarations, and they are rather similar.

Hence we will only give details on the dynamic semantics of Mini-Standard ML expressions.

6.1. Expres s ions

First consider the judgement e ~- EXP : ot on variables, value constructors, functions, and applications,

Figure 10, but wi thout considering exceptions.

val_of
e t-- z:c~

e l - - z : c ~

e 1- con : con

e ~ fnnMATCH : ~MATGH, e]

e ~- •XP : con e ~- EXP' : O: !

e ~ (~xr ~x~') : (con, ~'1
apply

e ~- EXP : f e t- EXP' : a t- f , a : a ~
e ~- (EXP EXP t) : ot !

e F- EXP : [ma t ch , ell e F- mxP' : a I e ~ ~- m a t c h , (~l : o~

e ~- (EXP Ex~') :

(1)

(2)

(3)

(4)

(5)

(6)

Figure 10. Evaruating an expression

The set of rules called val_of, rule 1, is used to look for the value ce associated to the value variable x

(this set is decribed in section 3.3). Rules 4, 5, and 6 describe the evaluation of an application according

to the result of the evaluation of its operator. Note that the type information on meta*~r iables con

and f is used to distinguish rules, rules 4 and 5, that have the same object term, but diff(.~'ent premises,

e ~- ExP : con and e ~- r.xp : f . In rule 5 the meta-variable f is of type BASFUN to APPLY: this rule specifies

the evaluation of basic functions. The set a p p l y is defined as follows, where the meta-variable b is of type

BASFUN:

set A P P L Y is

end APPLY;

b, ~ : b(~) (i)

a 't = eval(b, a , a t)
~- b(a), a ' : a" (2)

78

The e v a l funct ion is considered as predefined evaluator t ha t is capable of applying a basic funct ion b

to values a and c~ ~ and to re turn a value ate. Here the result depends only on the funct ion b, which is for

example addi t ion on integers.

T h e n we define our j u d g e m e n t s on expressions tha t deal wi th exceptions~ i.e. the raise expression and

the handle expression, Figure 11.

exc_of
e ~ WXN : e x c e~- ExP : c~ (7)
e]- raise ExN with EXP : <exc, a>

exc_of
C ~- E X N : eXC e ~- E X P : pack

e ~- raise EXN with EXP :pack (81

e ~- E X P : c~

e ~- EXP handle HANDLER : ~ (9}

e ~- EXP : pack e l- HANDLER~pack : a (10

e ~ E X P handle H A N D L E R :

Figure 11. Expressions wi th exceptions

A raise expression always evaluates to a packet, which is generated by the raise, rule 7, or which is

the resul t o f ' the evaluat ion of the expression, rule 8. T h e set exc_o f is used to look for the exception ezc

associated to the exception n a m e EXN (see section 3.3). The handler par t of an handle expression is only

used when the express ion par t of the handle evaluates to a packet, rule 10. The applicat ion of the handler

to the packet is described wi th the j u d g e m e n t e k- HANDLER, PACK : VAL.

Final ly the j u d g e m e n t s e ~- EXP : o~ and e ~- EXP : pack are used to specify the exception propagat ion

m e c h a n i s m in expressions, Figure 12.

e ~- E X P : O~ e [- E X P ' : pack
e F- (ExP EXP') : pack

e ~- ExP : pack
e k- (ExP ExP') : pack

app ly
e ~ - E x P : f e ~ - E x P ' : c ~ ~ f , c ~ : p a c k

c ~ (EXP SXP') : p a c k

e }- EXP : ~match~ e t] e ~- ExP' : a t c r ~ match, c / : pack
e F- (ExP ExP') : pack

e k- ExP : pack e ~- HANDLER, pack : pack
e ~- EXP handle HANDLER : pack

(11

(12

(is :

(14

(15

Figure 12. Except ion propagat ion for expressions

The rule 13 is necessary because some basic funct ions, such as "÷" may raise so-called s tandard

exceptions. This implies t h a t a new rule m u s t be added to the set a p p l y :

pack -~ evat(b, el, ~')
b(a), &:pack

79

In the last two rules 14 and 15, bo th the application of a match to a value and the application of a handler

to a packet may evaluate to a packet. Note tha t a packet which is not t rapped by a handler is propagated

as it is, rule 15.

6.2. Applying a match

In the application of a match PAT1 ==~ ~.XP1 I " '" I PAT, ==~ EXP~ to a value a , each component of the

match, the so-called mrule PATI ~ EXPi, is applied to the value a from left to right until one succeeds.

This is described by the rules 1 and 2 of Figure 13. If none succeeds, then the packet <ematch, 0 > is

returned, rule 3, where ematch is a predefined exception bound to the exception identifier "match". The

application of an mrule to a value c~ is described by the rules 4 and 5. When the pa t te rn PAT matches with

the value a, the mrule evaluates as the expression ExP, rule 4. But the application fails when the pat tern

and the value do not match, rule 5.

e ~- M R U L E , O~ : (:~p

e ~- M R U L E [M R U L E _ S , ot : C~p

e ~- MRULE, C~ : f a i l e ~- MRULE_S, ot : O~p

e t- M R U L E t M R U L E _ S , Ot : Otp

e ~ match[l , ~ : <ematch, 0>
~- PAT~ Ot : e t e ; e t ~- E X P : Otp

e ~- P A T =:~ EXP~ ot : Otp

}- PAT, O~ : f a i l

e k- PAT :=~ EXP, (~ : f a i l

/11

Figure 13. Applying a match

6.3. Applying a handler

The application of a handler, hrulel N "'" I] hrulen, to a packet pack evaluates in a ra ther similar

manner than the application of a match to a value. But the packet is propagated when none of the hrules

matches wi th t ha t packet, rule 3. To apply a w i t h to a packet, the exception exc ~ associated to the

exception name ~XN in the environment e must be "equal" to the first component exc of the packet, rule 4.

I-Iotherwise the application fails, rule 5. The boolean predicates eqeze and neqeze are used to test equality

on exceptions.

6.4. Evaluating a value binding

We give in figure 15 the rules for value bindings. In rule 1 the environment e I is obtained by pattern-

matching between the pa t t e rn and the value ~ of the expression. When this matching fails the packet

<ebind, 0 > is re turned, where ebind is a predefined exception bound to the exception identifier %bind".

The last rule, rule 3, describes packet propagation.

6.5. Evaluating an exception binding

The rules for exception binding are given in Figure 16. In rule I the exception identifier exn x is

associated to a new exception exe. But in rule 2 the exception exe was already associated to the exception

name EXN~,

80

e }- HRULE~paek : o~p

e]- HRULE II HF~ULE_S,pack: cep

e ~ HRULE,pack : f a i l e ~- HRULE_S,pack : ap

e ~- HRULS]] Ha~LE~,pack : %

e t- handler[] ,pack:pack

exc -of
e ~- E X N ; e X ¢ t e ~- M A T O H ~ (X : OLp

e I- EXN wi th MATCH, <:eXC, Oe> : Cep

exc_of
e ~- E X N : eX, C t

e t- EXN withMATOH, <exc, a> : f a i l

(eqe=(e=',~=))

(~eqe=(e=',e=))

(3)

(4)

(5)

Figure 14. Applying a handler

e ~- E X P : OL ~- PAT~ C~ : e t

e ~- PAT = EXP : e t (1~

e ~- EXP : c~ F- PAT, a : f a i l
e ~ PAT = EXP : <ebind, 0 > (21

e t- ~xP : pack
e ~- P A T ~--- E X P : pack (3)

Figure 15. Evalua t ing a value binding

¢
e exn x : ~exn x ~-+ exc~

exc -o f
e ~- exnx '~ -~exc

e F- exn x = exn x ' : {exn x ~-~ exc}

/1/1
(2) l

Figure 16. Evalua t ing an exception binding

7. R e l a t e d w o r k a n d c o n c l u s i o n

The use of type informat ion presented in this paper can be related to the work of Ai't-Kaci[1] and of

Mycroft[14] on typed logic. The approach proposed in this paper is a more modes t effort t ha t does not

use all t he generali ty of the typ ing inclusion m e c h a n i s m developped by A~t-Kaci[1] in the Login language.

Bu t our mot iva t ions are sl ightly different: Login is in tended to be a p rog ramming language for da tabase

appl icat ions while Na tu ra l Semant ics is a formal specification formal ism. For ins tance in Natura l Semant ics

we do not seem to need type inheri tance.

We have i l lus t ra ted the use of Natura l Semant ics to specify the dynamic semant ics of an applicative

language wi th except ion and pa t t e rn -ma tch ing . The m o s t impor t an t features of Na tu ra l Semant ics t ha t

have been used are the identification of tree t e rms wi th abs t rac t syn tax trees, tree t e rms are used as

ins tan t i a t ion filters, toge ther wi th the use of type informat ion on meta-var iables . We found t ha t last

aspect t h e key to produce modu la r and readable Na tu ra l Semant ic descriptions.

8]

Although we have not considered the implementation aspect of such a specification, the existence of

a compiler for Natural Semantics makes it feasible to execute the specification of the dynamic semantics

presented in this paper. Techniques to obtain an efficient implementation, and that have been omitted

from this paper, are still under development.

Acknowledgements: I would like to thank to J.Despeyroux for fruitful discussions and G. Kahn for
detailed suggestions and corrections.

REFERENCES

[1] H. AI'T-KAGI, AND R. NASR "Logic and Inheritance", ACM Journal of Logic Programming, pp
219-228, 1986

[2] H. AIT-KACI, "A Lattice-Theoretic Approach to Computation Based on a Calculus of Partially-
Ordered Type Structures", Ph.D Thesis, University of Pensylvania, 1984.

[3] CLI~MENT D., J. DESPEYROUX, T. DESPEYROUX, L. HASCOET, G.KAHN, "Natural Semantics
on the Computer", INRIA Research Report RR 416, INRIA-Sophia-Antipolis, June 1985.

[4] CLl~MENT D., J. DESPEYROUX, T. DESPEYROUX, G. KAHN, "A Simple Applicative Language:
Mini-ML', Conference on Lisp and Functional Programming, 1986.

[5] CLI~.MENT D. "The Natural Dynamic Semantics of Standard ML", to appear as Inria report.

[6] DESPEYROUX J. , "Proof of Translation in Natural Semantics", Logic in Computer Science, Cam-
bridge, Massachussets, June, 1986.

[7] DESPEYROUX T. , "Executable Specification of Static Semantics", Semantics of Data Types, Lecture
Notes in Computer Science, Vol. 173, June 1984.

[8] GENTZEN G. "The Collected Papers of Gerhard Gentzen", E.Szabo, Noth-Holland, Amsterdam,
1969.

[9] GORDON M., R. MILNER, C. WADSWORTH, G. COUSINEAU, G.HUET, L. PAULSON, "The
ML Handbook, Version 5.1", INRIA, October 1984.

[10] HUET G., "Formal Structures for Computation and Deduction", Courses Notes at CMU, May 1986.

[11] KAHN G., "Natural Semantics", Proc. of Symp. on Theoritical Aspects of Computer Science, Passau,
Germany, February 1987.

[12] MILNER R., "The Standard ML Core Language", Polymorphism, Volume II, Number 2, October,
1985.

[13] MILNER R., "The Dynamic Operational Semantics of Standard ML", Department of Computer
Science, University of Edinburgh, Edinburgh, England, April 1985 Private communication.

[14] MYCROFT A. AND O'KEEFE R.A., aA Polymorphic Type System for Prolog" ~ Journal of Artificial
Intelligence 23(3), pp 295-307, 1984.

[15] PLOTKIN G.D., "A Structural Approach to Operational Semantics", DAIMI FN-19, Computer
Science Department, Aarhus University, Aarhus, Denmark, September 1981.

[16] PRAWITZ D., "Natural Deduction, a Proof-Theoritical Study", Almqvist & Wiksell, Stockholm,
1965.

[17] WATT D. A., "Executable Semantic Descriptions", Software-practice and experience, Vol. 16(1),
p.13-43, january 1986.

