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Abstract 

We describe how to express the dynamic semantics of a small subset of the Standard ML language in 

Natural Semantics. The present specification is based on a communication of R.Milner that describes 

the dynamic semantics of Standard ML in a structural style, and can be viewed as an example of the 

"programming effort" that is necessary to obtain an executable version of such a specification. The main 

aspects of Natural Semantics covered concern its relationships with typed inference systems and with some 

properties of natural deduction. The description has been tested on a computer but we do not give here 

details on the compilation techniques. 

1. Introduction 

The use of inference systems to specify the static and dynamic semantics of programming languages 

has its origin in the presentation of semantics in a structural axiomatic style in Plotkin[15]. For example, 

to express that a "phrase P evaluates to a value a in an environment e" we can write a formal sentence of 

the form: 

c I - P : a  

where the evaluation predicate ":" is defined by a set of axioms and inference rules. Such a system formally 

defines the sound phrases (with respect to dynamic semantics) of a programming language as those tha t  

can be inferred from the system. In other words, the evaluation of a phrase P to a value a is defined by 

the existence of a derivation tree for e F- P : a. 

Natural Semantics is a specification formalism originating in Plotkin's structural semantics but  with 

flavors of Gentzen's natural  deduction[3], [10]. A specification in Natural Semantics is defined by inference 

rules involving several judgements. For dynamic semantics judgements are generally of the form e t- P : a ,  

meaning tha t  the term P has value a in context e. Then it  is possible to prove formal properties of these 

specifications: Natural Semantics has be used to prove the correctness of translations[6] for the central 

part  of the ML language. 

But  beside this purely descriptive aspect, a key question of interest is the use of logical systems 

as executable specification formalisms. Natural semantics is one such executable specification formalism. 

Specifications are written in Typol[7], a language tha t  implements Natural Semantics, and compiled to 

produce typecheckers, interpreters, and translators[4]. 

In this paper we present the natural  dynamic semantics of Standard ML, or more exactly of a subset 

of Standard ML. As pointed out by Milner[12] the design of Standard ML is based on simple and well 

understood ideas tha t  have been experimented with in previous versions of ML or in other functional 

languages. Furthermore Milner gives a formal definition of the dynamic semantics of core Standard ML[13] 
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in a structural axiomatic style. Hence we have the opportunity to use Natural Semantics on a completely 

specified language. 

In the next section we present the mMn aspects of Natural Semantics that  we use to specify the 

dynamic semantics of ML. Then we describe the subset of Standard ML used in the sequel of this paper 

together with the relevant semantic domains. In the following two sections we discuss two aspects of ML, 

namely exceptions and pattern matching~ that need special attention. The first one is a direct application 

of the notion of judgements, while the second one is also related to the specification of negation within 

inference rules. Finally we give the semantics of expressions, followed by all rules that are necessary to 

complete the specification of the dynamic semantics of our subset of Standard ML. 

2. N a t u r a l  Seman t i c s  

A specification in Natural Semantics is an inference system, i.e. a collection of inference rules that 

have the following form: 
hypotheses 
conclusion 

where both hypotheses and conclusion are of the form F ~- term : c~, where F is a set of hypothesis oi1, 

at least, the variables of term. In such a formula~ which is called a sequent, the context F~ the subject 

term, and the value c~ are abstract trees that belong to a finite system of types called an abstract syntax 

definition. The identification of Natural Semantics objects with abstract syntax trees is a central aspect 

of this formalism. 

First this identification implies that the tree terms used within Natural Semantics act as type construc- 

tors. Next this identification implies that every variable in Natural Semantics, also called meta-varlable, 

stands for values that belong to some abstract syntax definition. In other words the meta-variables of a 

specification in Natural Semantics are typed. We illustrate these two aspects on simple examples. 

2.1. Terms  are  t ype  c o n s t r u c t o r s  

An abstract syntax is defined by a system of types with sorts, subsorts, and functions. The notion of 

subsorts is used to express containment relations between sorts. 

Consider the system of types with two sorts VAR and EXP~ with the relation VAR ~ EXP to express that 

a variable is also an expression, and with two functions: vat :--~ VAR and application : EXP >~ EXP --~ EXP. 

In this system of types a tree term such as application(varF, varX) is of type EXP, while the two subtrees 

varF and varX are of type VAR. Hence in a sequent of the form F ~- applieation(varF, varX) : a, the 

subject stands for applications where the operator and the operand are both restricted to be object language 

variables. 

Now consider the term application(OPERATOR~ OPERAND)~ where OPERATOR and OPERAND are meta- 

variables. This term is of type EXP if and only if the two variables OPERATOR and OPERAND are of type 

EXP. In the sequent I" [- application(OPERATOR, OPERAND) : Or, the subject now stands for applications 

where both the operator and the operand are general expressions. This means in particular that the values 

of these two variables must be tree terms that belong to the sort EXP (or to subsorts of t~XP, such as the 

sort YAR), 

Hence the abstract syntax tree terms used within Natural Semantics act as type constructors. Fur- 

thermore the meta-variables that occur strictly within a tree term are implicitely typed by an abstract 
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syntax definition. In fact every meta-variable within a specification in Natural Semantics is typed, and 

this typing is of primary importance for the style of Natural Semantics specifications, as we explain now. 

2.2. Var i ab les  are  t y p e d  

As in other first order logic languages, a variable in Natural Semantics is used to impose equality 

constraints among subterms or to share information between different objects. But a variable occurrence 

in a Natural Semantic inference rule also expresses a constraint on the values that  can be substituted to 

that  variable. 

Consider the following rule that  could be used to specify the evaluation of an ML expression when it 

is reduced to an ML variable: 

e ~ ~:  ~ (e(x) = ~) 

Assume that the variable e denotes an environment that is a mapping of ML variables to ML values, and 

that the variable c~ denotes an ML value. Now to express that this rule is restricted to ML variables, 

i.e. on tree terms of the form vat X~ the meta-variable x must be declared of type VAR. Without such a 

containment on the values of the meta-variable x, any ML expression could be substituted to x. 

Hence a meta-variable in Natural Semantics can be used as an instantiation filter to restrict the domain 

of validity of an inference rule. But this filtering on the values of meta-variables is directly computed from 

the abstract syntax definitions. Define the phylum associated to a sort as the set of functions obtained 

from the partial order defined by the subsort relations. With our example of system of types with two 

sorts VAR and EXP, the phylum associated to the sort VAR is reduced to the set (var}, while the phylum 

associated to the sort EXP is the set ~var, application}. Then a meta-variable of type S denotes a variable 

that can only be substituted by a term whose root symbol belongs to the phylum P identified with type S, 

i.e. it is equivalent to an untyped variable v that satisfies a boolean predicate of the form v E P. 

The typing of meta-variables presented here provides a nice modularization mechanism for Natural 

Semantics specifications. In particular the type information on meta-variables can be used to distinguish 

rules that  express different evaluations of the same construct of a programming language. As we shall see 

later, this situation is central in the specification of the dynamic semantics of Standard ML because of 

the ML exception mechanism. Note that  this typing is essentially a matter of style. For instance in the 

example above, it is possible to use the tree term vat x instead of the meta-variable x to restrict the use 

of the inference rule to ML variables. More generally any inference rule with type information can also be 

expressed as an inference rule without type information but with auxiliary boolean predicates. 

3. A b s t r a c t  S y n t a x e s  

The Standard ML language defined in [12] is a quite complete functional programming language, even 

without Input/Output primitives nor Modules for separate compilation. For the purpose of this paper we 

only consider a subset of the Core language that includes the most relevant features of Standard ML in 

the context of their specification in Natural Semantics. A complete specification of the dynamic semantics 

of the full Standard ML language has also been done[5]. 

From Standard ML we keep the following constructs: 

-t- Declarations: value and exception declarations using value bindings and exception bindings, 

÷ Expressions: application, raising and handling exceptions, and function abstraction, 
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+ Patterns: to create value bindings by pat tern matching. 

but we omit the following: 

- type~ datatype, abstract datatype declarations, and type expressions (all of them are relevant of static 

semantics), 

- local declarations, bo th  in declarations (using local)  and in expressions (using let) ,  

- sequences in value bindings and exception bindings, 

- recursive value bindings, 

- labelled records and the layered pat tern construct, 

- side-effect constructs, i.e. references and assignment. 

3.1. A b s t r a c t  S y n t a x  of  Core  M i n i - M L  

The principal syntax classes of our Mini-Standard ML language are defined in terms of the three 

disjoint primitive classes given in Figure 1. 

s o r t s  VAR, CON, EXN 

f u n c t i o n s  
v a t  : -'~ 

con : 

e x n  : 

VAR value variables 

CON value constructors 

--* EXN exception names 

Figure 1. Primitive Classes 

An exception name is always completely determined by its occurrence in abstract syntax trees. But 

this is not true for value variables and value constructors for which the scope of datatype bindings must be 

taken into account. We assume that  any ambiguity on the class of an identifier has been solved (by a type- 

checker for example), i.e. we assume in the following that  ML abstract syntax trees are always well formed. 

Examples of value constructors are: booleans true and false, list constant niland list constructor ":: ' .  Value 

variables occur in value bindings such as "x = 1". 

The abstract  syntax of declarations, value and exception bindings, patterns, and expressions is given 

in Figure 2. 

The purpose of declarations is to bind identifiers to values. Value bindings axe used to declare value 

variables while exception bindings are used to declare exceptions. An exception binding is either a simple 

exception binding or an exception name: the sort EXN is a subsort of the sort EXCBIND. 

Pat terns  are linear terms containing only variables and value constructors. In our subset of Standard 

ML the unique compound pat tern is the construction of the form "con pal'. Finally, atomic expressions are 

value variables and value constructors (see the subsort section). Compound expressions are the function 

abstraction fun,  the application exp ezp ~, raising exceptions with ra i se ,  and handling exceptions with 

hand l e .  
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s o r t s  DEC 

f u n c t i o n s  
val 

exception 

: VALBIND 

: EXOBIND 

s o r t s  VALBIND 

f u n c t i o n s  

simple_value : 

~Declarations" 

-~ DEC 

-~ DEC 

~Value Bindings ~ 

PAT×EXP ~ VALBIND 

"Exception Bindings" 

s o r t s  EXCBIND 

s u b s o r t s  EXN -< EXCBIND 

f u n c t i o n s  

simple_excbind : 

va l  valbind 

e x c e p t i o n  excbind 

EXN×EXN --* EXCBIND 

"Patterns" 

s o r t s  PAT 

s n b s o r t s  (¥AR, CON) ~ PAT 

f u n c t i o n s  

construction 

pat = exp 

: CON×PAT --+ PAT con pat 

~Expressions" 

e x n  ~'z. e x n  ! 

s o r t s  EXP~ MATCH~ MRULE~ HANDLER~ HRULE 

s u b s o r t s  (VARyCON) -~ EXP 

f u n c t i o n s  

fun : MATCH -~ EXP f u n  match 

application : EXP XEXP -~ EXP exp exp ~ 

raise : EXNXEXP -~ EXP r a i s e  exn w i t h  exp 

handle : EXP×HANDLER -~ EXP exp h a n d l e  handler 

match : MRULE + -~ MATCH mrulel  1 . . .  I mrulen 

mrule : PATxEXP -~ MRULE pat ~ ezp 

handler : HRULE + -~ HANDLER hrulel II "'" II hruIe,  

with : EXN×MATCH -* HRULE ezn w i t h  match 

3 . 2 .  

Figure 2. Abstract  Syntax of ML 

A b s t r a c t  S y n t a x e s  o f  S e m a n t i c  d o m a i n s  

Now we need to define semantic domains such as the domain of values VAL and the environment 

domain ENV. To define the abstract  syntaxes of these domains we will need four sorts of the abstract 

syntax definition of Mini Standard ML: the sort MATCH, the sort CON, the sort VAR, and the sort EXN. 

All these sorts  are imported. This means tha t  we import  the language defined by the reflexive closure of 

each one of these four sorts.  

The abstract  syntax of values is given in Figure 3. A function value is a partial function represented 

as a c losu re .  A closure is a pair of a function body, i.e. an ML match match, and of an environment e. 
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T h e  value of  a cons t ruc to r  is t h a t  value const ructor ,  the  sor t  OON is a subsor t  of  VAL, and  a construct ion 

value is a product  of  a value cons t ruc tor  and  of an  M L  value. Following Milner,  basic funct ions  such as 

"+" and  " - "  are defined as members  of the  sort  BASFUN, which is a subsor t  of VAL. Bu t  for each basic 

funct ion f in BASFUN, a p p l y ( f ,  c~) denotes  the  resul t  of applying f to a value c~. Such part ial  funct ions 

are m e m b e r s  of the  sort  APPLY. 

s o r t s  VAL, BASFUN~ APPLY 

s u b s o r t s  (CON, BASFUN, APPLY) -~ VAL 

f u n c t i o n s  
closure : MATCH×ENV --~ VAL ~match, e 1 

prod : OONXVAL -~ VAL (e0n~ val) 

apply : BASFUN×VAL -~ APPLY f (va l )  

Figure 3. Values 

To associate  values to ML variables and exceptions to ML exception names  we use an e n v i r o n m e n t  

defined by the  abs t rac t  s y n t a x  given in figure 4. This  envi ronment  is a list of pairs. 

s o r t s  ENV~ PAIR~ VAR_PAIR~ EXN_PAIR 

s n b s o r t s  (VAR_PAIR, EXN_PAIR) -~ PAIR 

f u n c t i o n s  

var_palr : VAR×VAL -+ VAR_PAIR ~ar ~ val 

exn_pair : EXNxEXC ---* EXN_PAIR ezn ~* exc 

env : PAIR* ---* ENV envi ronment  e 

Figure 4. Env i ronments  

An  e x c e p t i o n  is an  object t ha t  belongs to the  sor t  EXO and to which an exception name  ezn may be 

associated.  The  na tu re  of  an  exception is immater ia l .  A p a c k e t  is a pair  of  an  exception and  an %xcepted" 

value~ and  it is the  unique opera tor  of  the  sort  PACK. Neither  exceptions nor  packets  are values. Finally 

the  s ingleton sort  FAIL denotes  failure (Figure 5). 

s o r t s  gXC, PACK~ FAIL 

f u n c t i o n s  

pack : EXOXVAL --~ PACK packet pack or <exc, val> 

exc : ---* EXC exception ezc 

fail : ~ FAIL failure fai l  

Figure 5. Packets ,  Except ions,  and  Fail 

3.3. E n v i r o n m e n t  a s  c o n t e x t  

Final ly we need to define the  man ipu la t ion  pr imit ives  on the  env i ronment  domain  ENV. A first 

possibil i ty is to give a funct ional  definition of these  envi ronment  man ipu la t i on  pr imit ives ,  as Milner does 

in I13]. Firs t  the  env i ronment  is defined as the  p roduc t  of  a value env i ronment  ve and  of an  exception 

env i ronment  ee. Each  c o m p o n e n t  of  an  env i ronment  is considered as a member  of  M A P ( S ,  $I),  the  set of  

finite par t ia l  func t ions  f rom a set S to a set S t. The  basic operat ions  on mapp ings  are defined as follows: 
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P r i m i t i v e s  o n  m a p p i n g s .  

i) I f  m belongs to M A P ( X , Y )  then 

m ( x ) = y  ~ (x,y) e m  

ii) For two maps m and m' ,  the map  m + rn' is defined by: 

m + , Z ( z )  = f m ' (z )  f i r e ' ( z )  is defined, 
[ m(~) otherwise. 

Then environment primitives are defined in terms of these basic operations with the help of some 

notat ions:  if e = (re, ee) and e' = (re', ee') then e + e' denotes (re + re ' ,  ee + ee'); fur thermore e-}-re '  

denotes (re + re', ee) and e + ee' denotes (ve, ee + ee'). 

Although such a functional definition of environment manipulat ions is perfectly meaningful, it is 

possible to give another  definition tha t  is more in the style of Natural  Semantics. First  the  environment e 

is considered as a list of propositions of the form x : 5 or ezn : eze, where the meta-variables x, a, ezn, and 

exe denote respectively an ML variable, an ML value, an ML exception name,  and an exception. PAIR* is 

the  set of finite sequences of such propositions.  We write an empty sequence "[]" (the empty environment) 

and e[x : a] the  sequence obtained from the sequence e by adding one more assumption [10]. Then to took 
vM -of 

for the value associated to an ML variable x in an environment e, we define the sequent F- as follows: 

se t  V A L _ O F  is 

e[x:  51 ~ x :  5 (1) 

e ~ x : 5  

e[y :~]  i- z : 5 
(u # ~) (2) 

e b - z : a  
e[exn : exc] I- z : 5 

(3) 

e n d  V A L _ O F ;  

Rule 1 is very similar to the tautology z : 5 b z : a ,  while rule 2 is akin of the thinning rule in Natural 

Deduction. The th i rd  rule is necessary to skip assumptions on exception names.  To look for the  exception 
exc-of 

associated to an exception name ezn, we use the sequent t- , tha t  is defined wi th  the same kind of 

rules. The role of  the  environment  in natural  semantics  is now quite explicit: it  is the  contezt~ i.e. a set 

of hypothesises on identifiers, necessary to derive the value of a phrase. Note that  we assume here that  

the environment  contains at  least one assumption on all free identifiers, ML variables and ML exception 

names,  of the ML te rm tha t  is evaluated. This consistency property should be proved as a lemma satisfied 

by well typed  ML programs.  
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4. S p e c i f i c a t i o n  o f  E x c e p t i o n s  

T h e  principle followed by Milner[13] to specify the  dynamic  semant ics  of  S tandard  ML is to define an 

evaluation relat ion ~'=~" wi th  inference rules, called evaluation rules, of the  form: 

el [- P1 =¢> r l  • • • e~ ~- Pr~ :==> rn 

e [-- P =:# r 

A formal  sentence such as e ~- 1 • ::> r expresses tha t ,  in a given envi ronment  e, the  phrase  P evaluates 

to a resul t  r. Of  course the  na tu re  of r depends  on the  syn tax  class of P. For example  the  result  r is 

an  env i ronment  when  P is an  ML declarat ion,  b u t  it  is an  ML va.lue when  p is an  ML expression. So 

the  evaluat ion of S t anda rd  ML is formally defined by an inference sys tem,  f rom which sentences may be 

inferred. 

T h e n  it is necessary to specify the  exception m e c h a n i sm  of S tandard  ML, which is defined by the  

following principle of  except ion propagation[12]: whenever  a sub-phrase  evaluates  to a packet then  no 

fur ther  sub-evaluat ions  occur and the  exception is propagated,  i.e. the  packet is also the  resul t  of  the  main  

phrase.  This  is achieve by adding,  for every evaluat ion rule, n fur ther  rules, one for each k wi th  1 < k < n, 

called packet  p ropaga t ion  rules. Generally packet  propagat ion  rules for a t e rm  P are of  the  form: 

el ~- Pl  ~ rl " "  ek ~- P~ ~ pack 

e k- P ~ pack 

where the  variables rl, wi th  1 < i < k - 1, are not  packets.  

In Natura l  Semant ics  we follow the  same  kind of approach,  bu t  we consider t ha t  the  dynamic  semant ics  

of S tandard  ML is defined wi th  different judgements on ML terms.  First ,  we define the  evaluat ion of ML 

phrases  wi th  j u d g e m e n t s  of  the  form e ~- P : r where the  resul t  r is no t  a packet.  T h e n  we specify exceptions 

of S t anda rd  ML wi th  j u d g e m e n t s  of the  form e ~- P : p where p can only be a packet.  

For example  the  d y n a m i c  semant ics  of  Mini -ML declarat ions  is defined by the  judgement :  

e ]- DEC : e ~ 

where bo th  c and  e t are of  type  ENV. Then~ because a declarat ion may  evaluate  to a packet,  we define 

ano ther  j udgemen t :  

c ~- DEC : pack 

where the  variable pack is of  type PACK. Now the exception propaga t ion  m e c h a n i s m  of S t anda rd  ML can 

be defined as transition rules between these  different kinds of judgements .  

As  a smM1 digression,  we would like to indicate how the  type  cons t ruc tor  in terpre ta t ion  of abs t ract  

t e rms  is used  to make  our specification executable.  Consider  our j udgemen t s  as t e rnary  predicates "_ ~- 

_ : 2 ' ,  one for each form of judgemen t s ,  t h a t  belong to a meta - sys tem:  such predicates  can be evaluated 

wi th in  the  m e t a - s y s t e m  in a Prolog like manner .  Now the  opera tor  % F- _ : _" is heavily overloaded, and 

to execute these  predicates  in the  m e t a - s y s t e m  it is necessary to solve this  overloading (this is one of the  

purposes  of  the  compiler  of  Natura l  Semant ics  specifications).  Th i s  is ~w~hieved by comput ing  the  type  

of each predicate  f rom the  abs t rac t  syn tax  defini t ions of the  object te rms.  Note tha t ,  to avoid such an 

overloading: we could have defined two syntac t ica ly  different j udgemen t s ,  one of the  form e k- P : r, the 

o ther  of  the  form e ~- P :: pack. W i t h  this  approach exception p ropaga t ion  rules  are coercion rules between 
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these judgements .  B u t  we prefer to use the  type  informat ion  on meta-var iabtes  to d is t inguish  judgements  

on t e r m s  t h a t  belong to the  same sort ,  bu t  on disjoint semant ic  domains .  

We re tu rn  now to the  specification of exceptions.  For Min i -S tandard  ML we have the  following types  

for our  j udgemen t s ,  classified according to the  syntac t ic  na tu re  of  the  subject  P: 

1) d e c l a r a t i o n s :  e F- DEC : e of type  BNV x DEC × ENV and e I- DEC : pack of type  ENV × DEC × PACK, 

2) v a l u e  b i n d i n g s :  e ~- VALBIND : e I of type  ENV × VALBIND × ENV and e F- VALBIND : pack of type 

ENV × VALBIND × PACK, 

3) e x c e p t i o n  b i n d i n g s :  e }- EXGBIND : e I of  type ENV X EXGBIND × ENV, 

4) e x p r e s s i o n s :  e b- EXP : ce of type  ENV x EXP × VAL and e }- EXP : pack of type ENV x EXP × PACK. 

To i l lus t ra te  our  approach,  consider Mini -S tandard  ML declarat ions.  Fi rs t  we define the  j udgemen t  

e b- D~C : e ' ,  F igure  6. This  j u d g e m e n t  corresponds to the  normal  evaluat ion of an  ML declaration.  

e k VALBIND : e' (1) 
e ~ val VALBIND : e t 

e ~- EXGBIND : e I 

e ]- exception EXCBIND : e I (2) 

Figure 6. Evalua t ing  a Declarat ion 

The  evaluat ion of a value declarat ion and  of an  exception declarat ion,  rules 1 and 2, are expressed 

in t e r m s  of the  evaluat ion of their  bindings,  respectively value binding and  exception binding. They  bo th  

evaluates  to an  env i ronment  e'. T h e n  we define the  j u d g e m e n t  e }- DEC : pack of type  ENV × DEC X PACK for 

exceptions,  Figure  7. It  is only necessary to add a rule because ML exception declarat ions  never evaluate 

to a packet.  

e }- VALBIND : pack 
e }- val VALBIND : pack 

Figure 7. Except ion in Declarat ions 

(3) 

5. S p e c i f i c a t i o n  o f  P a t t e r n - m a t c h i n g  

Ano the r  in teres t ing  aspect  of the  dynamic  semant ics  of S tandard  ML is the  use of the  same mechan i sm 

for value b indings  in value declarat ions,  v a l  x --  1, pa rame te r  b indings  in applicat ions,  ( f u n  match) e, and 

exception handl ings ,  exuwlthmatch.  This  is achieved wi th  a pa t t e rn -ma tch ing  m e c h a n i s m  between ML 

pa t t e rns  and ML values. For example  a condit ional  expression i f  el t h e n  e2 e l se  es is equivalent to the  

following application: 
( f u n  tr~e=~" ) e l e 2  

false =~ es 

where true ~ e2 and false ~ ea are the  so-called mrules of the  match .  

Given a p a t t e r n  PAT and an ML value a the  first purpose  of ML ma tch ing  is to act as a filter between 

the  s t ruc tu re  of  the  p a t t e r n  and  the  s t ruc ture  of  the  value. The  second purpose  of ML ma tch ing  is to 
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bind the ML variables that  occur in the pattern with ML values. Furthermore ML pattern matching is 

independent of the environment. Hence it is possible to describe the ML pattern-matching mechanism 

with a judgement b- PAT, o~ : e of type PAT × VAL × ENV. For our subset of Standard ML, this judgement 

is defined by the rules given in Figure 8. 

x , ~ :  Ix: ~] (i) 

F- c o n ,  c o n  : ¢ (2) 

~- eAT, VAL : e ( 3 )  

k CON PAT, (CON, VAL) : e 

Figure 8. Matching a Pattern to a Value 

The rule 1 shows the binding facet of ML pattern matching: an ML variable matches any value and 

the environment Ix : a] is built. A value constructor matches only with the same value constructor, and 

no environment is built, rule 2. Finally the rule 3 specifies the matching of a construction with a product 

value. Both must have the same constructor as first component, then pattern-matching is recursiveIy 

applied to their second components. 

But this judgement only describes valid pattern matchings, i.e. matchings that  do not fail. Indeed as a 

filter the matching fails for some pairs of patterns and values. Rather informally the ML pattern-matching 

fails when no proof tree can be obtained from the previous system. In some sense we are faced with the 

well known problem of negation in inference rules. To solve the difficulty we propose a solution based on 

rules conditioned by boolean predicates. 

We define another form of judgement l- PAT~ ~ : fail, of type PAT x VAL x FAIL, by the rules of Figure 9. 

Basicaly the ML pattern-matching only fails for incompatible pairs of ML pattern and of ML value. Note 

that an ML variable matches with any value: this matching never fails. For an ML constructor, the 

matching fails for every ML value that is not "equal" to this constructor, rule 4. Rule 5 expresses the 

same kind of condition for an ML construction. But there is another case of failure for ML constructions 

because the matching of the pattern PAT and of the value VAL may fails, rule 6. 

F- con, val : fai l  (val 7 ~ con) 

k- con  PAT, val : fa i l  ( v a I ¢  (CON, VAL)) 

~- r,A% VAL : fa i l  
CON PAT, (OON, VAL) : fa i l  

(6) 

Figure 9. Failure of ML Matching 

Remark: the rules that describe normal evaluation and exception propagation are sometimes rather 

similar. Consider the two rules I and 3 for declarations, figures 6 and 7, and the two rules 3 and 6 for 

expressions, figures 8 and 9. With some loss in modularity, it is possible to merge these rules as foltows: 

e ~ VALBIND : ep ~- PAT, VAL : e f  

e ~- val  VALBIND : ep ~- CON PAT, (OON~ VAL) : e f  
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where the  meta-variables ep and ef  are respectively of type ENV U PACK and ENV U FAIL. But now we have 

two new judgements  of type ENV x DEG × (ENV tO PACK) and PAT × VAL x (ENV tO FAIL). This technique 

can be used for the purpose of concision. 

6. S p e c i f i c a t i o n  o f  E x p r e s s i o n s  a n d  other c l a s s e s  

To complete the specification of the dynamic semantics of our subset of Standard  ML we have to 

define judgements  on matches,  handlers,  value bindings, exception bindings, and expressions. But all 

these specifications are done wi th  the approach presented on ML declarations,  and they are rather  similar. 

Hence we will only give details on the dynamic semantics of Mini-Standard ML expressions. 

6.1. Expres s ions  

First  consider the  judgement  e ~- EXP : ot on variables, value constructors,  functions, and applications, 

Figure 10, but  wi thout  considering exceptions. 

val_of 
e t-- z:c~ 

e l - - z : c ~  

e 1- con : con 

e ~ fnnMATCH : ~MATGH, e] 

e ~- •XP : con e ~- EXP' : O: ! 

e ~ (~xr  ~x~') : (con, ~'1 
apply 

e ~- EXP : f e t- EXP' : a t- f ,  a : a ~ 
e ~- (EXP EXP t) : ot ! 

e F- EXP : [ma t ch ,  ell e F- mxP' : a I e ~ ~- m a t c h ,  (~l : o~ 

e ~- (EXP Ex~') : 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Figure 10. Evaruating an expression 

The set of rules called val_of,  rule 1, is used to look for the value ce associated to the value variable x 

(this set is decribed in section 3.3). Rules 4, 5, and 6 describe the evaluation of an application according 

to the result of the evaluation of its operator.  Note that  the type information on meta*~r iables  con 

and f is used to distinguish rules, rules 4 and 5, that  have the same object term, but  diff(.~'ent premises, 

e ~- ExP : con and e ~- r.xp : f .  In rule 5 the meta-variable f is of type BASFUN to APPLY: this rule specifies 

the evaluation of basic functions. The set a p p l y  is defined as follows, where the meta-variable b is of type 

BASFUN: 

set A P P L Y  is 

end APPLY; 

b, ~ :  b(~) (i) 

a 't = eval(b, a ,  a t) 
~- b(a),  a ' :  a" (2) 
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The  e v a l  funct ion  is considered as predefined evaluator  t ha t  is capable of applying a basic funct ion b 

to values a and  c~ ~ and  to re turn a value ate. Here the  result  depends  only on the  funct ion b, which is for 

example  addi t ion on integers.  

T h e n  we define our  j u d g e m e n t s  on expressions tha t  deal wi th  exceptions~ i.e. the  raise expression and 

the  handle expression,  Figure  11. 

exc_of  
e ~ WXN : e x c  e~- ExP : c~ (7) 
e ]- raise ExN with EXP : <exc, a> 

exc_of 
C ~- E X N  : eXC e ~- E X P  : pack 

e ~- raise EXN with EXP :pack (81 

e ~- E X P  : c~  

e ~- EXP handle  HANDLER : ~ (9} 

e ~- EXP : pack e l- HANDLER~pack : a (10 

e ~ E X P  handle  H A N D L E R  : 

Figure 11. Expressions wi th  exceptions 

A raise expression always evaluates  to a packet,  which is generated by the  raise, rule 7, or which is 

the  resul t  o f ' the  evaluat ion of the  expression,  rule 8. T h e  set exc_o f  is used to look for the  exception ezc 

associated to the  exception n a m e  EXN (see section 3.3). The  handler  par t  of an handle  expression is only 

used when  the express ion par t  of  the  handle  evaluates  to a packet,  rule 10. The  applicat ion of the  handler  

to the  packet  is described wi th  the  j u d g e m e n t  e k- HANDLER, PACK : VAL. 

Final ly the  j u d g e m e n t s  e ~- EXP : o~ and e ~- EXP : pack are used to specify the  exception propagat ion 

m e c h a n i s m  in expressions,  Figure  12. 

e ~- E X P  : O~ e [- E X P '  : pack 
e F- (ExP EXP') : pack 

e ~- ExP : pack 
e k- (ExP ExP')  : pack 

app ly  
e ~ - E x P : f  e ~ - E x P ' : c ~  ~ f , c ~ : p a c k  

c ~ (EXP SXP') : p a c k  

e }- EXP : ~match~ e t] e ~- ExP'  : a t c r ~ match, c / :  pack 
e F- (ExP ExP') : pack 

e k- ExP : pack e ~- HANDLER, pack : pack 
e ~- EXP handle  HANDLER : pack 

(11 

(12 

( is :  

(14 

(15 

Figure 12. Except ion propagat ion  for expressions 

The  rule 13 is necessary because some basic funct ions,  such as "÷"  may  raise so-called s tandard  

exceptions.  This  implies t h a t  a new rule m u s t  be added to the  set a p p l y :  

pack -~ evat(b, el, ~') 
b(a), &:pack  
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In the  last two rules 14 and 15, bo th  the application of a match to a value and the application of  a handler 

to a packet may evaluate to a packet. Note tha t  a packet which is not  t rapped by a handler  is propagated 

as it is, rule 15. 

6.2. Applying a match 

In the  application of a match  PAT1 ==~ ~.XP1 I " '" I PAT, ==~ EXP~ to a value a ,  each component  of the 

match,  the  so-called mrule PATI ~ EXPi, is applied to the value a from left to right until one succeeds. 

This is described by the  rules 1 and 2 of Figure 13. If none succeeds, then the packet <ematch,  0 > is 

returned,  rule 3, where ematch is a predefined exception bound to the exception identifier "match".  The 

application of an mrule to a value c~ is described by the rules 4 and 5. When the pa t te rn  PAT matches with 

the value a, the  mrule evaluates as the expression ExP, rule 4. But the application fails when the pat tern  

and the  value do not  match,  rule 5. 

e ~- M R U L E ,  O~ : (:~p 

e ~- M R U L E  [ M R U L E _ S ,  ot : C~p 

e ~- MRULE, C~ : f a i l  e ~- MRULE_S, ot : O~p 

e t-  M R U L E  t M R U L E _ S ,  Ot : Otp 

e ~ match[ l ,  ~ :  <ematch, 0> 
~- PAT~ Ot : e t e ; e t ~- E X P  : Otp 

e ~- P A T  =:~ EXP~ ot : Otp 

}- PAT, O~ : f a i l  

e k- PAT :=~ EXP, (~ : f a i l  

/11 

Figure 13. Applying a match  

6.3. Applying a handler 

The application of a handler,  hrulel  N "'" I] hrulen, to a packet pack evaluates in a ra ther  similar 

manner  than  the  application of  a match to a value. But the packet is propagated when none of the hrules 

matches  wi th  t ha t  packet,  rule 3. To apply a w i t h  to a packet, the exception exc ~ associated to the 

exception name ~XN in the environment e must  be "equal" to the first component  exc of the packet, rule 4. 

I-Iotherwise the application fails, rule 5. The boolean predicates eqeze and neqeze are used to test  equality 

on exceptions. 

6.4. Evaluating a value binding 

We give in figure 15 the  rules for value bindings. In rule 1 the  environment e I is obtained by pattern-  

matching between the  pa t t e rn  and the value ~ of the expression. When this matching fails the packet 

<ebind, 0 > is re turned,  where ebind is a predefined exception bound to the exception identifier %bind". 

The last rule, rule 3, describes packet propagation.  

6.5. Evaluating an exception binding 

The rules for exception binding are given in Figure 16. In rule I the  exception identifier exn x is 

associated to a new exception exe. But in rule 2 the exception exe was already associated to the exception 

name EXN~, 
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e }- HRULE~paek : o~p 

e ]- HRULE II HF~ULE_S,pack: cep 

e ~ HRULE,pack : f a i l  e ~- HRULE_S,pack : ap 

e ~- HRULS ]] Ha~LE~,pack  : % 

e t- handler[] ,pack:pack  

exc -of  
e ~- E X N  ; e X ¢  t e ~- M A T O H ~  (X : OLp 

e I- EXN wi th  MATCH,  <:eXC, Oe> : Cep 

exc_of 
e ~- E X N  : eX, C t 

e t- EXN withMATOH, <exc, a> : f a i l  

(eqe=(e=',~=)) 

(~eqe=(e=',e=)) 

(3) 

(4) 

(5) 

Figure 14. Applying a handler  

e ~- E X P  : OL ~- PAT~ C~ : e t 

e ~- PAT = EXP : e t (1~ 

e ~- EXP : c~ F- PAT, a : f a i l  
e ~ PAT = EXP : <ebind, 0 > (21 

e t- ~xP : pack 
e ~- P A T  ~--- E X P  : pack (3) 

Figure 15. Evalua t ing  a value binding 

¢ 
e exn x : ~exn x ~-+ exc~ 

exc -o f  
e ~- exnx '~ -~exc  

e F- exn x = exn x '  : {exn x ~-~ exc} 

/1/1 
(2) l 

Figure 16. Evalua t ing  an exception binding 

7. R e l a t e d  w o r k  a n d  c o n c l u s i o n  

The  use  of type  informat ion  presented in this  paper  can be related to the  work of Ai't-Kaci[1] and of 

Mycroft[14] on typed  logic. The  approach proposed in this  paper  is a more  modes t  effort t ha t  does not  

use  all t he  generali ty of  the  typ ing  inclusion m e c h a n i s m  developped by A~t-Kaci[1] in the  Login language.  

Bu t  our mot iva t ions  are sl ightly different: Login is in tended to be a p rog ramming  language  for da tabase  

appl icat ions  while Na tu ra l  Semant ics  is a formal  specification formal ism.  For ins tance  in Natura l  Semant ics  

we do not  seem to need type  inheri tance.  

We have i l lus t ra ted  the  use of Natura l  Semant ics  to specify the  dynamic  semant ics  of an applicative 

language  wi th  except ion and  pa t t e rn -ma tch ing .  The  m o s t  impor t an t  features  of Na tu ra l  Semant ics  t ha t  

have been used are the  identification of tree t e rms  wi th  abs t rac t  syn tax  trees, tree t e rms  are used as 

ins tan t i a t ion  filters, toge ther  wi th  the  use of type informat ion  on meta-var iables .  We found t ha t  last  

aspect  t h e  key to produce modu la r  and  readable Na tu ra l  Semant ic  descriptions.  
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Although we have not considered the implementation aspect of such a specification, the existence of 

a compiler for Natural Semantics makes it feasible to execute the specification of the dynamic semantics 

presented in this paper. Techniques to obtain an efficient implementation, and that have been omitted 

from this paper, are still under development. 

Acknowledgements: I would like to thank to J.Despeyroux for fruitful discussions and G. Kahn for 
detailed suggestions and corrections. 
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