Skip to main content

A quantum jump in computer science

  • Chapter
  • First Online:
Computer Science Today

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1000))

Abstract

Classical and quantum information are very different. Together they can perform feats that neither could achieve alone. These include quantum computing, quantum cryptography and quantum teleportation. This paper surveys some of the most striking new applications of quantum mechanics to computer science. Some of these applications are still theoretical but others have been implemented.

This essay was written while the author was on sabbatical leave at the University of Wollongong, Australia; Research supported in part by nserc and fcar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenco, A., D. Deutsch, A. Ekert and R. Jozsa, “Conditional quantum dynamics and logic gates”, Physical Review Letters, Vol. 74, 1995, pp. 4083–4086.

    Article  PubMed  Google Scholar 

  2. Benioff, P., “Quantum mechanical Hamiltonian models of Turing machines”, Journal of Statistical Physics, Vol. 29, no. 3, 1982, pp. 515–546.

    Article  Google Scholar 

  3. Bennett, C.H., “Logical reversibility of computation”, IBM Journal of Research and Development, Vol. 17, 1973, pp. 525–532.

    Google Scholar 

  4. Bennett, C.H., F. Bessette, G. Brassard, L. Salvail and J. Smolin, “Experimental quantum cryptography”, Journal of Cryptology, Vol. 5, no. 1, 1992, pp. 3–28.

    Article  Google Scholar 

  5. Bennett, C.H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”, Physical Review Letters, Vol.70, no. 13, 29 March 1993, pp. 1895–1899.

    Article  PubMed  Google Scholar 

  6. Bennett, C.H., G. Brassard, C. Crépeau and M.-H. Skubiszewska, “Practical quantum oblivious transfer”, in Advances in Cryptology — CRYPTO '91 Proceedings, J. Feigenbaum (editor), Lecture Notes in Computer Science, Vol. 576, Springer-Verlag, Berlin, 1992, pp. 351–366.

    Google Scholar 

  7. Bennett, C.H., G. Brassard and A. Ekert, “Quantum cryptography”, Scientific American, October 1992, pp. 50–57. Reprinted in The Computer in the 21st Century, Scientific American, Inc., 1995, pp. 164–171.

    Google Scholar 

  8. Bennett, C.H., G. Brassard, B.Schumacher, J. Smolin and W. K. Wootters, “Purification of noisy entanglement, and faithful teleportation via noisy channels”, manuscript, 1995.

    Google Scholar 

  9. Bernstein, E. and U. Vazirani, “Quantum complexity theory”, Proceedings of the 25th Annual ACM Symposium on Theory of Computing, 1993, pp. 11–20.

    Google Scholar 

  10. Berthiaume, A. and G. Brassard, “Oracle quantum computing”, Journal of Modern Optics, Vol. 41, no. 12, 1994, pp. 2521–2535.

    Google Scholar 

  11. Berthiaume, A., D. Deutsch and R. Jozsa, “The stabilisation of quantum computations”, Proceedings of the Third Workshop on Physics and Computation — PhysComp '94, Dallas, November 1994, IEEE Computer Society Press, 1994, pp. 60–62.

    Google Scholar 

  12. Brassard, G., “Cryptology column — Quantum cryptography: A bibliography”, Sigact News, Vol. 24, no. 3, 1993, pp. 16–20.

    Article  Google Scholar 

  13. Brassard, G., “Time for another paradigm shift”, Computing Surveys, Vol. 27, no. 1, 1995, pp. 19–21.

    Article  Google Scholar 

  14. Brassard, G., C. Crépeau, R. Jozsa and D. Langlois, “A quantum bit commitment scheme provably unbreakable by both parties”, Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, 1993, pp. 362–371.

    Google Scholar 

  15. Coppersmith, D., “An approximate Fourier transform useful in quantum factoring”, IBM T. J. Watson Research Report RC 19642, Yorktown Heights, NY 10598, USA, 12 July 1994.

    Google Scholar 

  16. Deutsch, D., “Quantum theory, the Church-Turing principle and the universal quantum computer”, Proceedings of the Royal Society, London, Vol. A400, 1985, pp. 97–117.

    Google Scholar 

  17. Deutsch, D. and R. Jozsa, “Rapid solution of problems by quantum computation”, Proceedings of the Royal Society, London, Vol. A439, 1992, pp. 553–558.

    Google Scholar 

  18. DiVincenzo, D. P., “Two-bit gates are universal for quantum computation”, Physical Review A, Vol. 51, 1995, pp. 1015–1022.

    Article  PubMed  Google Scholar 

  19. Domokos, P., J.-M. Raimond, M. Brune and S. Haroche, “A simple cavity-QED two-bit universal quantum logic gate: principle and expected performances”, Physical Review A, to appear.

    Google Scholar 

  20. Einstein, A., B. Podolsky and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?”, Physical Review, Vol. 47, 1935, pp. 777–780.

    Article  Google Scholar 

  21. Ekert, A., “Quantum cryptography based on Bell's theorem”, Physical Review Letters, Vol. 67, no. 6, 5 August 1991, pp. 661–663.

    Article  PubMed  Google Scholar 

  22. Ekert, A. and R. Jozsa, “Shor's quantum algorithm for factorising numbers”, Review of Modern Physics, to appear.

    Google Scholar 

  23. Feynman, R. P., “Simulating physics with computers”, International Journal of Theoretical Physics, Vol. 21, nos. 6/7, 1982, pp. 467–488.

    MathSciNet  Google Scholar 

  24. Feynman, R. P., “Quantum mechanical computers”, Optics News, February 1985. Reprinted in Foundations of Physics, Vol. 16, no. 6, 1986, pp. 507–531.

    Google Scholar 

  25. Gisin, N., personal communication, 18 May 1995.

    Google Scholar 

  26. Hartmanis, J., “Response to the essays ‘On computational complexity and the nature of computer science'”, Computing Surveys, Vol. 27, no. 1, 1995, pp. 59–61.

    Article  Google Scholar 

  27. Landauer, R., “Is quantum mechanically coherent computation useful?”, in Proceedings of the Drexel-4 Symposium on Quantum Nonintegrability—Quantum Classical Correspondence, D. H. Feng and B.-L. Hu (editors), International Press, 1995.

    Google Scholar 

  28. Lloyd, S., “A potentially realizable quantum computer”, Science, Vol. 261, 17 September 1993, pp. 1569–1571.

    Google Scholar 

  29. Marand, C. and P. D. Townsend, “Quantum key distribution over distances as long as 30 km”, Optics Letters, Vol. 20, 15 August 1995.

    Google Scholar 

  30. Peres, A., “Reversible logic and quantum computers”, Physical Review A, Vol. 32, 1985, pp. 3266–3276.

    Article  PubMed  Google Scholar 

  31. Peres, A. and W. K. Wootters, “Optimal detection of quantum information”, Physical Review Letters, Vol. 66, no. 9, 4 March 1991, pp. 1119–1122.

    Article  PubMed  Google Scholar 

  32. Shor, P. W., “Algorithms for quantum computation: Discrete logarithms and factoring”, Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 124–134.

    Google Scholar 

  33. cSimon, D., “On the power of quantum computation”, Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 116–123.

    Google Scholar 

  34. Unruh, W. G., “Maintaining coherence in quantum computers”, Physical Review A, Vol. 51, February 1995, pp. 992–997.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brassard, G. (1995). A quantum jump in computer science. In: van Leeuwen, J. (eds) Computer Science Today. Lecture Notes in Computer Science, vol 1000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015233

Download citation

  • DOI: https://doi.org/10.1007/BFb0015233

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60105-0

  • Online ISBN: 978-3-540-49435-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics