Abstract
The increasing availability of advanced-architecture computers is having a very significant effect on all spheres of scientific computation, including algorithm research and software development in numerical linear algebra. Linear algebra -in particular, the solution of linear systems of equations and eigenvalue problems — lies at the heart of most calculations in scientific computing. This paper discusses some of the recent developments in linear algebra designed to help the user on advanced-architecture computers.
Much of the work in developing linear algebra software for advancedarchitecture computers is motivated by the need to solve large problems on the fastest computers available. In this paper, we focus on four basic issues: (1) the motivation for the work; (2) the development of standards for use in linear algebra and the building blocks for a library; (3) aspects of templates for the solution of large sparse systems of linear algorithm; and (4) templates for the solution of large sparse eigenvalue problems. This last project is under development and we will pay more attention to it in this paper.
This work was made possible in part by grants from the Defense Advanced Research Projects Agency under contract DAAL03-91-C-0047 administered by the Army Research Office, the Office of Scientific Computing U.S. Department of Energy under Contract DE-AC05-84OR21400, the National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615, and National Science Foundation Grant No. ASC-9005933.
Preview
Unable to display preview. Download preview PDF.
References
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, Release 2.0. SIAM, Philadelphia, 1995. 324 pages. URL http://www.netlib.org/lapack/lug/lapack_lug.html.
E. Anderson and J. Dongarra. Results from the initial release of LAPACK. Techn. Rep. LAPACK working note 16, Computer Science Department, University of Tennessee, Knoxville, TN, 1989.
E. Anderson and J. Dongarra. Evaluating block algorithm variants in LAPACK. Techn. Rep. LAPACK working note 19, Computer Science Department, University of Tennessee, Knoxville, TN, 1990.
Z. Bai. Progress in the numerical solution of the nonsymmetric eigenvalue problem, 1993. To appear in J. Num. Lin. Alg. Appl.
Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part I. In Proc. 6th SIAM Conference on Parallel Processing for Scientific Computing. SIAM, 1993. Long version: UC Berkeley Comp. Sc. Rep. all.ps.Z via anonymous ftp from tr-ftp.cs.berkeley.edu, directory pub/tech-reports/csd/csd-92-718.
R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, V. Pozo, Romime C., and H. van der Vorst. Templates for the solution of linear systems: Building blocks for iterative methods. SIAM, 1994. URL http://www.netlib.org/templates/templates.ps.
R. Boisvert. The architecture of an intelligent virtual mathematical software repository system. Mathematics and Computers in Simulation, 36:269–279, 1994.
J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers. In Proc. 4th Symposium on the Frontiers of Massively Parallel Computation, pages 120–127. IEEE Computer Society Press, 1992.
J. Choi, J. J. Dongarra, and D. W. Walker. The design of scalable software libraries for distributed memory concurrent computers. In J. J. Dongarra and B. Tourancheau, editors, Environments and Tools for Parallel Scientific Computing. Elsevier Science Publishers, 1993.
D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick. Introduction to Split-C: Version 0.9. Techn. Rep. Computer Science Division — EECS, Univ. of California, Berkeley, CA, February 1993.
J. Cullum and R. A. Willoughby. Lanczos algorithms for large symmetric eigenvalue computations. Birkhaüser, Basel, 1985. Vol.1, Theory, Vol.2. Program.
J. Demmel. Berkeley Lecture Notes in Numerical Linear Algebra. Mathematics Department, University of California, 1993. 215 pages.
J. Demmel and B. Kågström. The generalized Schur decomposition of an arbitrary pencil A — λB: Robust software with error bounds and applications. Parts I and II. ACM Trans. Math. Soft., 19(2), June 1993.
J. Demmel. LAPACK: A portable linear algebra library for supercomputers. In Proc. 1989 IEEE Control Systems Society Workshop on Computer-Aided Control System Design, December 1989.
J. J. Dongarra. Increasing the performance of mathematical software through high-level modularity. In Proc. Sixth Int. Symp. Comp. Methods in Eng. & Applied Sciences, Versailles, France, pages 239–248. North-Holland, 1984.
J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart. LINPACK Users' Guide. SIAM Press, 1979.
J. J. Dongarra. LAPACK Working Note 34: Workshop on the BLACS. Computer Science Dept. Technical Report CS-91-134, University of Tennessee, Knoxville, TN, May 1991.
J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw., 16(1):1–17, 1990.
J. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of Fortran basic linear algebra subroutines. ACM Trans. Math. Softw., 14(1):1–17, March 1988.
J. J. Dongarra and R. A. van de Geijn. LAPACK Working Note 37: Twodimensional basic linear algebra communication subprograms. Computer Science Department, University of Tennessee, Knoxville, TN, October 1991.
J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail. Communications of the ACM, 30(5):403–407, July 1987. URL http://www.netlib.org/.
E. W. Felten and S. W. Otto. Coherent parallel C. In G. C. Fox, editor, Proc. 3rd Conference on Hypercube Concurrent Computers and Applications, pages 440–450. ACM Press, 1988.
F. Gantmacher. The Theory of Matrices, Vol. II (transl.). Chelsea, New York, 1959.
B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matrix Eigensystem Routines — EISPACK Guide Extension, Lecture Notes in Computer Science, Vol. 51. Springer-Verlag, Berlin, 1977.
G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 2nd edition, 1989.
R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger Ltd., Bristol, UK, 1981.
T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 2 edition, 1980.
C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for Fortran usage. ACM Trans. Math. Soft., 5:308–323, 1979.
A. Packard, M. Fan, and J. Doyle. A power method for the structured singular value. In IEEE Conf. on Decision and Control, pages 2132–2137, 1988.
B. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ, 1980.
B. Parlett. The software scene in the extraction of eigenvalues from sparse matrices. SIAM J. Sci. Stat. Comp., 5:590–604, 1984.
W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C. Cambridge University Press, Cambridge, UK, 1991.
Y. Saad. Numerical methods for large eigenvalue problems. Manchester University Press, 1992.
G. Sleijpen and H. van der Vorst. Reliable updated residuals in hybrid Bi-CG methods. Preprint 886, Utrecht University, the Netherlands, 1994. to appear in Computing.
G. Sleijpen and H. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems. Preprint 856 (revised), Utrecht University, the Netherlands, 1995. to appear in SIMAX.
B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in Computer Science, Vol. 6. Springer-Verlag, Berlin, 1976.
G. W. Stewart. Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Review, 15(4):727–764, Oct 1973.
G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, New York, 1990.
C. überhuber. Computer-Numerik, Part 1 and 2, Springer-Verlag, Berlin, 1995.
A.J. van der Steen (ed). Aspects of Computational Science. NCF, Den Haag, the Netherlands, 1995.
P. Van Dooren. The computation of Kronecker's canonical form of a singular pencil. Lin. Alg. Appl., 27:103–141, 1979.
P. Van Dooren. Reducing subspaces: Definitions, properties and algorithms. In B. Kågström and A. Ruhe, editors, Matrix Pencils, pages 58–73. Lecture Notes in Mathematics, Vol. 973, Proceedings, Springer-Verlag, Berlin, 1983.
J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.
J. Wilkinson and C. Reinsch. Handbook for Automatic Computation: Volume II — Linear Algebra. Springer-Verlag, New York, 1971.
P. Young, M. Newlin, and J. Doyle. Practical computation of the mixed Μ problem. In Proc. American Control Conference, pages 2190–2194, 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bai, Z. et al. (1995). Templates for linear algebra problems. In: van Leeuwen, J. (eds) Computer Science Today. Lecture Notes in Computer Science, vol 1000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015240
Download citation
DOI: https://doi.org/10.1007/BFb0015240
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60105-0
Online ISBN: 978-3-540-49435-5
eBook Packages: Springer Book Archive