Skip to main content

The ART behind IDEAS

  • Chapter
  • First Online:
Computer Science Today

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1000))

Abstract

The IDEAS design system is an innovative algorithm engineering environment. It can be employed to derive correct and efficient software or hardware implementations from algebraic specifications using the advanced formal method ART. Several case studies for some algorithm engineering tasks are discussed in this article to demonstrate the feasibility of this system.

This research was supported by DFG under project Be 887/6-2.

This research was supported by DFG through the Graduiertenkolleg “Beherrschbarkeit komplexer Systeme”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Beth. Verfahren der schnellen Fourier-Transformation. Teubner-Verlag, 1984.

    Google Scholar 

  2. T. Beth. Generating Fast Hartley Transforms — another application of the Algebraic Discrete Fourier Transform. In Proc. Int. Sym. Signals, Systems, and Electronics ISSSE 89, pages 688–692. Union Radio Scientifique International, 1989.

    Google Scholar 

  3. T. Beth, R. Blatt, P. Zoller, and H. Weinfurter. Engineering quantum gates. In preparation, 1995.

    Google Scholar 

  4. T. Beth, W. Fumy, and R. Mühlfeld. Zur Algebraische Diskreten Fourier Transformation. Arch. Math., 40:238–244, 1983.

    Article  Google Scholar 

  5. T. Beth, J. Müller-Quade, and A. Nückel. IDEAS — Intelligent Design Environment for Algorithms and Systems. In M. E. Welland and J. K. Gimzewski, editors, Ultimate Limits of Fabrication and Measurement, pages 49–57. Kluwer, 1995.

    Google Scholar 

  6. R. Blahut. Theory & Practice of Error-Control Codes. Addison-Wesley Publ. Comp., Reading, MA, 1983.

    Google Scholar 

  7. R. Blahut. Fast algorithms for Digital Signal Processing. Addison-Wesley Publ. Comp., Reading, MA, 1985.

    Google Scholar 

  8. B. Buchberger, Collins G. E., and Loos R.. Computer Algebra. Springer-Verlag, Berlin, 1982.

    Google Scholar 

  9. I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math., 41:909–996, 1988.

    Google Scholar 

  10. I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series Appl. Math., SIAM, 1992.

    Google Scholar 

  11. D. P. DiVincenzo. Two-bit gates are universal for quantum computation. Physical Review A, 51(2), 1995.

    Google Scholar 

  12. E. Feig and S. Winograd. Fast algorithms for the Discrete Cosine Transform. IEEE Trans. on Signal Processing, pages 2174–2193, 1992.

    Google Scholar 

  13. W. Fumy and H. P. Rieß. Kryptographie. Oldenburg, 1988.

    Google Scholar 

  14. W. Geiselmann. Algebraische Algorithmenentwicklung am Beispiel der Arithmetik in endlichen Körpern. Dissertation, Universität Karlsruhe, 1993.

    Google Scholar 

  15. D. Gollmann. Algorithmenentwurf in der Kryptographie. Bibliographisches Inst., Mannheim, 1994.

    Google Scholar 

  16. R. D. Jenks and R. S. Sutor. Axiom: the scientific computation system. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  17. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland Publ. Comp., Amsterdam, 1977.

    Google Scholar 

  18. S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):674–693, Juli 1989.

    Article  Google Scholar 

  19. T. Minkwitz. Algorithmensynthese für lineare Systeme mit Symmetrie. Dissertation, Universität Karlsruhe, 1993.

    Google Scholar 

  20. T. Minkwitz. Algorithms explained by symmetries. In E. W. Mayr and C. Puech, editors, STACS 95, Proc. 12th Annual Symposium, volume 900 of Lecture Notes in Computer Science, pages 157–167. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  21. M. Reck and A. Zeilinger. Experimental realization of any discrete unitary operator. Physical Review Letters, 73(1), 1994.

    Google Scholar 

  22. J. P. Serre. Linear Representations of Finite Groups. Grad. Texts in Math. 42. Springer-Verlag, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beth, T., Klappenecker, A., Minkwitz, T., Nückel, A. (1995). The ART behind IDEAS. In: van Leeuwen, J. (eds) Computer Science Today. Lecture Notes in Computer Science, vol 1000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015241

Download citation

  • DOI: https://doi.org/10.1007/BFb0015241

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60105-0

  • Online ISBN: 978-3-540-49435-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics