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Abstract. Software architecture is the level of software design that ad-
dresses the overall structure and properties of software systems. It provides
a focus for certain aspects of design and development that are not appropri-
ately addressed within the constituent modules. Architectural design depends
heavily on accurate specifications of subsystems and their interactions. These
specifications must cover a wide variety of properties, so the specification no-
tations and associated methods must be selected or developed to match the
properties of interest. Unfortunately, the available formal methods are only
a partial match for architectural needs, which entail description of structure,
packaging, environmental assumptions, representation, and performance as
well as functionality. A prerequisite for devising or selecting a formal method
is sound understanding of what needs to be formalized. For software architec-
ture, much of this understanding is arising through progressive codification,
which begins with real-world examples and creates progressively more precise
models that eventually support formalization. This paper explores the pro-
gressive codification of software architecture: the relation between emerging
models and the selection, development, and use of formal systems.

1 Status and Needs of Software Architecture

As software systems become more complex, a critical aspect of system design is
the overall structure of the software and the ways in which that structure provides
conceptual integrity for the system. This level of system design has come to be known
as software architecture [GS93, PW92].

In an architectural design, systems are typically viewed as compositions of module-
scale, interacting components. Components are such things as clients and servers,
databases, filters, and layers in a hierarchical system. Interactions between compo-
nents at this level of design can be simple and familiar, such as procedure call and
shared variable access. But they can also be complex and semantically rich, such as
client-server protocols, database accessing protocols, asynchronous event multicast,
and piped streams.

While it has long been recognized that finding an appropriate architectural design
for a system 1s a key element of its long-term success, current practice for describ-
ing architectures is typically informal and idiosyncratic. Usually, architectures are

* In Computer Science Today: Recent Trends and Developments, Springer-Verlag Lecture
Notes in Computer Science, Volume 1000, 1995, pp. 307-323.



represented abstractly as box and line diagrams, together with accompanying prose
that explains the meanings behind the symbols, and provides some rationale for the
specific choice of components and interactions.

The relative informality and high level of abstraction of current practice in de-
scribing architectures might at first glance suggest that architectural descriptions
have little substantive value for software engineers. But there are two reasons why
this is not the case. First, over time engineers have evolved a collection of idioms, pat-
terns, and styles of software system organization that serve as a shared, semantically-
rich vocabulary between engineers. For example, by identifying a system as an in-
stance of a pipe-filter architectural style an engineer communicates the facts that
the system is primarily involved in stream transformation, that the functional be-
havior of the system can be derived compositionally from the behaviors of the con-
stituent filters, and that issues of system latency and throughput can be addressed
in relatively straightforward ways. Thus, although this shared vocabulary is largely
informal, it conveys considerable semantic content between software engineers.

The second reason is that although architectural structures may themselves ab-
stract away from details of the actual computations of the elements, those structures
provide a natural framework for understanding broader system-level concerns, such
as global rates of flow, patterns of communication, execution control structure, scala-
bility, and intended paths of system evolution. Thus, architectural descriptions serve
as a skeleton around which system properties can be fleshed out, and thereby serve
a vital role in exposing the ability of a system to meet its gross system requirements.

This is, of course, not to say that more formal notations for architectural de-
scription and rigorous techniques of analysis are unnecessary. Indeed, it is clear that
much could be gained if the current practice of architectural design could be sup-
ported with better notations, theories, and analytical techniques. In this paper we
explore specification issues in software architecture, with particular attention to the
way improvements in the formulation of architectural issues sets the stage for better
formalization.

1.1 Current Status

Over the past few years, recognition of the significance of software architecture
has led to considerable research and development activity, both in industry and
academia. These activities can be roughly placed into four categories.

The first category i1s addressing the problem of architectural characterization by
providing new architectural description languages. As detailed later, these languages
are aimed at giving practitioners better ways of writing down architectures so that
they can be communicated to others, and in many cases analyzed with tools.

The second category is addressing codification of architectural expertise [GHIV94,
(GS93]. Work in this area is concerned with cataloging and rationalizing the variety of
architectural principles and patterns that engineers have developed through software
practice.

The third category is addressing frameworks for specific domains [DAR90, Tra94].
This work typically results in an architectural framework for a specific class of soft-
ware such as avionics control systems, mobile robotics, or user interfaces. When



successful, such frameworks can be easily instantiated to produce new products in
the domain.

The fourth category addresses formal underpinnings for architecture. As new
notations are developed, and as the practice of architectural design is better under-
stood, formalisms for reasoning about architectural designs become relevant. Several
of these are described later.

1.2 What Needs to be Specified about Architectures

Architectural design determines how to compose systems from smaller parts so the
result meets system requirements. Most system requirements extend beyond func-
tionality to a variety of other properties that matter to the client. Moreover, the
correctness of the composition depends at least as much on the component interac-
tions and on the assumptions components make about their execution environment
as 1t does on what the components actually compute.

Accordingly, architectural specifications must address the extra-functional prop-
erties of components (structure, packaging, environmental dependencies, representa-
tion, and performance), the nature of the interactions among components, and the
structural characteristics of the configurations.

Structural Properties. The most significant properties for architectural design
deal with the ways components interact, and hence with the ways those components
can be combined into systems. The packaging of a component includes the type of
component and the types of interactions it is prepared to support. The choice of
packaging is often largely independent of the underlying functionality, but compo-
nents must be packaged in compatible ways if they are to work together smoothly.
For example, Unix provides both a sort system call and a sort filter; while they have
the same functionality, they are far from interchangeable.
Some common packagings for components and the ways they interact are:

|CoMPONENT TYPE|COMMON TYPES OF INTERACTION |

Module Procedure call, data sharing
Object Method invocation (dynamically bound procedure call)
Filter Data flow
Process Message passing, remote procedure call
various communication protocols, synchronization
Data file Read, write
Database Schema, query language
Document Shared representation assumptions

Distinctions of this kind are now made informally, often implicitly. If the distinc-
tions were more precise and more explicit, it would be easier to detect and even-
tually correct incompatibilities by analyzing the system configuration description.
Such checking must address not only local compatibility (e.g., do two components
expect the same kinds of interactions), but also global properties (e.g., no loops in
a data flow system).



Extra-functional Properties. In addition to functionality and packaging, archi-
tectural specifications must be capable of expressing extra-functional properties re-
lated to performance, capacity, environmental assumptions, and global properties
such as reliability and security [Sha85, MCN92, CBKA95]. Many of these additional
properties are qualitative, so they may require different kinds of support from more
formal specifications. These other properties include:

time requirements ease of use

timing variability reliability

real-time response robustness

latency service capacity (e.g., # of clients/server)
throughput possession of main thread of control
bandwidth dependence on specific libraries, services
space requirements conformance to an interface standard
space variability conformance to implementation standard
adaptability intended profile of operation usage
precision and accuracy minimum hardware configuration
security need to access specialized hardware

For example, this product description specifies the interface between a software
product and the operating system/hardware it requires [Com95].

1. IBM or 100% IBM-compatible microcomputer with Intel 80386 microprocessor
or higher or 100%-compatible processor.

2. Minimum 4 MB RAM.

. 3 MB of available space on a hard disk.

4. IS0 9660-compatible CD-ROM drive with 640+ MB read capacity and Microsoft
CD-ROM extensions.

5. Microsoft Windows’-compatible printer (not plotter) recommended, with 1.5 MB
printer memory for 300 dpi laser printing, 6 MB for 600 dpi.

6. Microsoft Windows’-compatible mouse (recommended).

. Microsoft Windows’-compatible VGA card and monitor.

8. Microsoft Windows’ version 3.1 and MS-DOS version 4.01 or later.
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This specification deals with space and with conformance to established stan-
dards. The functionality of the product is described (imprecisely) in associated prose
and pictures.

Families of Related Systems. In addition to structure and packaging, architec-
tural specifications must also deal with families of related systems. Two important
classes of system family problems are:

1. Architectural styles that describe families of systems that use the same types of
components, types of interactions, structural constraints, and analyses. Systems
built within a single style can be expected to be more compatible than those that
mix styles: it may be easier to make them interoperate, and it may be easier to
reuse parts within the family.



2. Some systems can accommodate a certain amount of variability: they depend
critically on some central essential semantics, and they require certain other
support to be present, but do not rely on details. In operating systems, these
are sometimes distinguished as policy and mechanism, respectively: for example,
it’s important for a synchronization mechanism to prevent interference, deadlock,
and starvation, but the details of process ordering are incidental.

2 Models and Notations for Software Architectures

Software systems have always had architectures; current research is concerned with
making them explicit, well-formed, and maintainable. This section elaborates on the
current practice, describes the models that are now emerging and the languages that
support some of those models, and discusses the standards that should be used to
evaluate new models and tools in this area.

2.1 Folklore and Common Practice

As noted above, software designers describe overall system architectures using a rich
vocabulary of abstractions. Although the descriptions and the underlying vocabulary
are imprecise and informal, designers nevertheless communicate with some success.
They depict the architectural abstractions both in pictures and words.

“Box-and-line” diagrams often illustrate system structure. These diagrams use
different shapes to suggest structural differences among the components, but they
make little discrimination among the lines—that is, among different kinds of inter-
actions. The architectural diagrams are often highly specific to the systems they
describe, especially in the labeling of components. For the most part, no rules gov-
ern the diagrams; they appeal to rich intuitions of the community of developers.
Diagramming rules do exist for a few specific styles—data flow diagrams and some
object-oriented disciplines, for example.

The diagrams are supported by prose descriptions. This prose uses terms with
common, if informal, definitions (italics ours):

— “Camelot is based on the client-server model and uses remote procedure calls
both locally and remotely to provide communication among applications and
servers.” [ST87]

— “Abstraction layering and system decomposition provide the appearance of sys-
tem uniformity to clients, yet allow Helix to accommodate a diversity of au-
tonomous devices. The architecture encourages a client-server model for the
structuring of applications.” [FO85]

— “We have chosen a distributed, object-oriented approach to managing informa-
tion.” [Lin&7]

— “The easiest way to make the canonical sequential compiler into a concurrent
compiler is to pipeline the execution of the compiler phases over a number of pro-
cessors. ... A more effective way [is to] split the source code into many segments,
which are concurrently processed through the various phases of compilation [by
multiple compiler processes] before a final, merging pass recombines the object
code into a single program.” [ST88]



— “The ARC network [follows] the general network architecture specified by the
ISO in the Open Systems Interconnection Reference Model. It consists of phys-
ical and data layers, a network layer, and transport, session, and presentation
layers.” [Pau85]

We studied sets of such descriptions and found a number of abstractions that gov-
ern the overall organization of the components and their interactions [GS93]. A few
of the patterns, or styles, (e.g., object organizations [Boo86] and blackboards [Niig6])
have been carefully refined, but others are still used quite informally, even uncon-
sciously. Nevertheless, the architectural patterns are widely recognized. System de-
signs often appeal to several of these patterns, combining them in various ways.

2.2 Emerging Models

Most of the current work on software architecture incorporates models, either ex-
plicit or implicit, of the conceptual basis for software architecture. Some of this
work 1s directed at refining models; other work implicitly adopts a model in pur-
suit of some other goal. Five general types of models appear with some regularity:
structural, framework, dynamic, process, and functional. Of these, structural and dy-
namic models are most common. The representative examples here were discussed
at the First International Workshop on Architectures for Software Systems [Gar95]
and the Dagstuhl Workshop on Software Architecture [GPT95].

Structural Models. The most common model views architecture as primarily struc-
tural. This family of models shares the view that architecture is based on components,

connectors, and “other stuff”. The “other stuff” in various ways reaches beyond

structure to capture important semantics. Although there is not as yet consensus

on precisely what that semantics is, “other stuff” includes configuration, rationale,

semantics, constraints, style, properties, analyses, and requirements or needs. As

detailed later, structural models are often supported by architecture description

languages. Examples include Aesop, C2, Darwin, UniCon, and Wright. A shared

interchange language, ACME, is being developed.

Framework Models. A second group of models is similar to structural models,
but places more emphasis on the coherent structure of the whole than on describing
structural details. These framework models often focus on one specific structure,
for example, one that targets a specific class of problems or market domain. Nar-
rowing the focus permits a richer elaboration for the domain of interest. Examples
include various domain-specific software architectures (DSSAs), MetaObject Proto-
cols (MOPs), CORBA and other object interaction models, component repositories,
and SBIS.

Dynamic Models. Dynamic models are complementary to structural or frame-
work models. They address large-grain behavioral properties of systems, often de-
scribing reconfiguration or evolution of the systems. “Dynamic” may refer to changes
in the overall system configuration, to setting up and taking down pre-enabled paths,



or to the progress of computation (changing data values, following a control thread).
These systems are often reactive. Examples include the Chemical Abstract Machine,
Archetype, Rex, Conic, Darwin, and Rapide.

Process Models. Another, smaller, family, the process models, i1s constructive, op-
erational, and imperative. These models focus on the construction steps or processes
that yield a system. The architecture is then the result of following some process
script. Examples include some aspects of Conic and process programming for archi-
tecture.

Functional Models. A minority regards architecture as a set of functional com-
ponents, organized in layers that provide services upward. It is perhaps most helpful
to think of this as a particular framework.

2.3 Architectural Description Languages

Of the models described in Section 2.2, the structural models are now most preva-
lent. A number of architecture description languages (ADLs) are being developed
to support these models. ADLs typically support the description of systems in
terms of typed components and sometimes connectors that make the abstractions
for interaction first-class entities in the language. They often provide a graphical
interface so that developers can express architectures using diagrams of the kind
that have proven useful. Current ADLs include Aesop [GAO94], ArTek [T*94], Dar-
win [MK95], Rapide [LAK195], UniCon [SDK*95], and Wright [AG94].

While all of these ADLs are concerned with architectural structure, they differ in
their level of genericity. There are three basic levels. Some are primarily concerned
with architectural instances. That 1s, they are designed to describe specific systems,
and provide notations to answer the questions of the form “What is the architecture
of system 57”7 ArTek, Rapide, and UniCon are in this category.

Other ADLs are primarily concerned with architectural style. That is, they are
designed to describe patterns, or idioms, of architectural structure. The notations
in this category therefore describe families of systems, and answer questions of the
form “What organizational patterns are are used in system S?7”7, or “What is the
meaning of architectural style T7?” Aesop is in this category.

ADLs associated with styles typically attempt to capture one or more of four
aspects of style: the underlying intuition behind the style, or the system model; the
kinds of components that are used in developing a system according to the pattern;
the connectors, or kinds of interactions among the components; and the control
structure or execution discipline.

Still other ADLs are concerned with architecture in general. They attempt to
give meaning to the broader issues of the nature of architecture, and the ways ar-
chitectural abstractions can provide analytic leverage for system design. Several of
these are considered later in this paper.



2.4 Evaluation Criteria

Languages, models, and formalisms can be evaluated in a number of different ways.
In this case, the models and the detailed specifications of relevant properties have a
utilitarian function, so appropriate evaluation criteria should reflect the needs of soft-
ware developers. These criteria differ from the criteria used to evaluate formalisms
for mathematical elegance.

Expertise in any field requires not only higher-order reasoning skills, but also a
large store of facts, together with a certain amount of context about their impli-
cations and appropriate use. This is true across a wide range of problem domains;
studies have demonstrated it for medical diagnosis, physics, chess, financial analysis,
architecture, scientific research, policy decision making, and others [Red88, Sim87].
An expert 1n a field must know around 50,000 chunks of information, where a chunk
is any cluster of knowledge sufficiently familiar that it can be remembered rather
than derived. Chunks are typically operational: “in this situation, do that’. Further-
more, full-time professionals take ten years to reach world-class proficiency. It follows
that models and tools intended to support experts should support rich bodies of op-
erational knowledge. Further, they should support large vocabularies of established
knowledge as well as the theoretical base for deriving information of interest.

Contrast this with the criteria against which mathematical systems are evalu-
ated. Mathematics values elegance and minimality of mechanism; derived results
are favored over added content because they are correct and consistent by their
construction.

Architecture description languages are being developed to make software design-
ers more effective. They should be evaluated against the utilitarian standard, prefer-
ring richness of content and relevance to the application over elegance and minimal-
ity. This implies, for example, that these languages should support— directly—the
breadth of architectural abstractions that software designers use: data flow (includ-
ing pipes and filters), object-oriented, functional, state-based, message-passing, and
blackboard organizations. The fact that these abstractions could all be expressed
using some one of the styles is interesting but not grounds for impeding the choice
of abstractions relevant to the project at hand.

3 Progressive Codification

Software specification techniques have often evolved in parallel with our understand-
ing of the phenomena that they specify.

This development can bee seen in the development of data types and type the-
ory [Sha80]. In the early 1960s, type declarations were added to programming lan-
guages. Initially they were little more than comments to remind the programmer of
the underlying machine representation. As compilers became able to perform syntac-
tic validity checks the type declarations became more meaningful, but “specification”
meant little more than “procedure header” until late in the decade. The early 1970s
brought early work on abstract data types and the associated observation that their
checkable redundancy provided a methodological advantage because they gave early
warning of problems. At this time the purpose of types in programming languages



was to enable a compile-time check that ensured that the actual parameters pre-
sented to a procedure at runtime would be acceptable. Through the 1980s type
systems became richer, stimulated by the introduction of inheritance mechanisms.
At the same time, theoretical computer scientists began developing rich theories
to fully explain types. Now we see partial fusion of types-in-languages and types-
as-theory in functional languages with type inference. We see in this history that
theoretical elaboration relied on extensive experience with the phenomena, while at
the same time practicing programmers are willing to write down specifications only
to the extent that they are rewarded with analysis than simplifies their overall task.

Thus, as some aspect of software development comes to be better understood,
more powerful specification mechanisms become available, and they yield better
rewards for the specification effort invested. We can characterize some of the levels
of specification power:

1. Capture: retain, explain, or retrieve a definition

2. Construction: explain how to build in instance from constituent parts

3. Composition: say how to join pieces (and their specifications) to get a new in-
stance

. Selection: guide designer’s choice among implementation alternatives or designs

. Vertfication: determine whether an implementation matches specification

. Analysis: determine the implications of the specification
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. Automation: construct an instance from an external specification of properties

When describing, selecting, or designing a specification mechanism, either formal
or informal, it 1s useful to be explicit about which level 1t supports. Failure to do so
leads to mismatches between user expectations and specification power.

Architecture description languages provide a notation for capturing system de-
scriptions. Several have associated tools that will construct instances from modules
of some programming language. At least one technique for design selection has been
developed [Lan90]. Support for other levels of aspiration is spotty.

No matter how badly we would like to leap directly to fully formal architectural
specifications that support analysis and automation, history says we must first make
our informal understanding explicit, then gradually make it more rigorous as it ma-
tures. In this way the specification mechanisms may be appropriate for the properties
that they specify. Application of existing formal methods in inappropriate ways will
fail to come to grips with the essential underlying problems.

4 Practice and Prospects for Formalisms

To illustrate the ways in which software architecture is being progressively codified,
we now outline some of the formalisms that have been developed for software ar-
chitecture. The goal here is not to provide a complete enumeration, but rather to
indicate broadly the kinds of formalisms that are being investigated by the software
architecture research community, and the extent to which those formalisms have
been successful.



4.1 Formalisms in Use for Architecture

In order to make sense of the variety of existing formal approaches, it helps to have an
organizational framework. One such framework positions architectural formalisms in
two dimensional space that follows directly from the distinctions made in previous
sections. Along one dimension is the genericity of the formalism. As outlined in
Sect. 2.3, architectural concerns may relate to (a) a specific system (or architectural
instance), (b) a family of systems (or architectural style), or (c) architecture in
general. Along the second dimension is the power of the formalism. As outlined in
Sect. 3, aspirations of different formal notations can vary from system documentation
to automated system construction.

In practice, most formalisms address several aspects of this space. For example, a
formal notation for architectural styles might be useful both for system construction
as well as support verification. In most cases, however, a formalism has at its core
a specific problem that it 1s attempting to address. It is this core that we are most
interested in. Here are four core functions in this design space.

Analysis of Architectural Instances. Going beyond the base-level capability of

architectural description languages to express specific system designs is the need

to perform useful analyses of the designs. To do this requires the association of an

underlying semantic model with those descriptions. Several such models have been

proposed. These differ substantially depending on the kind of model they consider.
To take four representative examples:

1. Rapide models the behavior of a system in terms of partially ordered sets of
events [LAK'95]. Components are assigned specifications that allow the sys-
tem’s event behavior to be simulated and then analyzed. Typical kinds of analy-
ses reveal whether there is a causal dependency between certain kinds of compu-
tations. The presence (or absence) of these causality relationships can sometimes
indicate errors in the architectural design.

2. Darwin [MK95] models system behavior in terms of the m-calculus [MPW92].
The flexibility of this model permits the encoding of highly dynamic architec-
tures, while the strong typing system of the m-calculus permits certain static
checks. For example, it can guarantee that processes only talk over channels of
the correct type, even though the number and connectivity of those channels
may change during runtime.

3. UniCon [SDK*95] and Aesop [GAO94] support methods for real-time analysis—
RMA and EDF| respectively. These ADLs, and their supporting tools, capture
relevant information, repackage it into the formats required by real-time analysis
tools, which are then invoked to perform the analyses.

4. Wolf and Inverardi have explored the use of Chemical Abstract Machine no-
tation [BB92] for modelling architectural designs [TW95]. This model also deals
well with dynamic behavior of a system, essentially providing a kind of structural
rewrite system.

Capture of Architectural Styles. When people refer to a system as being in
a pipe-filter style it may not be clear precisely what they mean. While it may be



clear that such a system should be decomposed into a graph of stream transformers,
more detailed issues of semantics are typically left underspecified, or may vary from
system to system. For example, are cycles allowed? Must a pipe have a single reader
and a single writer? Can filters share global state?

In an attempt to provide more complete semantics for some specific styles a
number of styles have been completely formalized. For example, Allen and Gar-
lan [AG92] provide a formalization of a pipe-filter architectural style, while [GN91]
develops a formalization of implicit-invocation architectural style. Both of these use
the 7 specification language [Spi89)

Generalizing from these examples, Abowd, Allen, and Garlan [AAG93] describe
a denotational framework for developing formal models of architectural style (also in
7). The idea of the framework is that each style can be defined using three functions
that indicate how the syntactic, structural aspects of the style are mapped into
semantic entities. The authors argue that when several styles are specified in this
way, it becomes possible to compare those styles at a semantic level. For example,
1s one style a substyle of another? Does a property of one style hold of another?

A somewhat different approach arises in the context of architectures for specific
product families. A number of such “domain-specific” software architectures have
been formalized. One of the more prominent is in the avionics domain [BV93]. Here
a language, called Meta-H, was developed to capture the architectural commonality
among the applications, and to provide high-level syntactic support for instantiat-
ing the framework for a specific product. The language was designed to reflect the
vocabulary and notations that avionics control systems engineers (as opposed to
software engineers) routinely used in their designs.

Verification of Architectural Styles. In many cases architectural descriptions
are at a sufficiently abstract level that they must be refined into lower-level archi-
tectural descriptions. Typically, the lower-level descriptions are in terms of design
entities that are more directly implemented than their abstract counterparts. For ex-
ample, a system that is described at an abstract level as a dataflow system, might be
recast in terms of shared variable communication at a lower (but still architectural)
design level.

Moriconi and his colleagues have observed that it is possible to exploit patterns
of refinement between different levels of architectural description [MQR95]. For in-
stance, refining a dataflow connector to a shared variable connector involves a styl-
ized transformation of asynchronous reading/writing to synchronized data access.

To capitalize on this observation they have proposed formalisms that encode
transformations between architectural styles. In the above example, they might pro-
vide a pipe-to-shared-data transformation. The goal is to provide a complete enough
system of transformations that machine aided refinement can take place. Moreover,
as they note, by factoring out proofs of correctness of refinement at the style (or
family) level, they simplify the work needed to carry out the refinement between
any two architectural instances written in the respective styles.

Analysis of Architecture in General. When considering architectural design
broadly, a number of formal questions arise: What does it mean to have a consistent



or a complete architectural description? What is the formal nature of architectural
connection?

The Wright specification language represents first steps toward answering these
kinds of questions [AG94]. In this language, connectors are viewed as first class enti-
ties, defined as a set of protocols. Similarly, interfaces to components are described
in terms of the protocols of interaction with their environment. Given this formal
basis, it is possible to ask whether a given connector can be legally associated with a
given component interface. This amounts to a test for protocol compatibility. Wright
protocols are defined as CSP processes [Hoa85], and protocol compatibility can be
reduced to a check of process refinement. The result of such a check is a strong
guarantee that components interacting over a given connector will never deadlock.

4.2 What’s Missing?

Standing back from the specific formalisms currently under development, two salient
facts stand out.

First, consistent with the multi-faceted nature of software architecture itself,
formalisms for modelling architecture are attempting to address a wide range of
different issues. There is both good and bad news in this. The good news is that
we are making incremental progress on understanding ways to lend precision and
analytic capability to architectural design. The bad news is that the diversity of
approaches leads to a fragmented and, in some cases, conflicting set of formal models
for architecture. Consequently, no general unifying picture has emerged. And worse,
we have no good ways of relating the various models to each other.

Second, existing formalisms address only a small portion of the needs of soft-
ware architects. By and large, the formal approaches to software architecture have
concentrated on the functional behavior of architectural descriptions. That is, they
typically provide computational models, or ways of constructing them, that expose
issues of data flows, control, sequencing, and communication. While useful and nec-
essary, this is only a starting point. In addition—and arguably more important—are
the extra-functional aspects of systems, such as performance, reliability, security,
modifiability, and so on. Currently we do not know how to provide the necessary
calculi for these other kinds of issues, or to relate these systems of reasoning to the
existing formalisms for architecture.

5 Current Opportunities

Although the structure of software has been a concern for decades, software archi-
tecture has only recently emerged as an explicit focus of research and development.
While considerable progress has been made over the last 5-10 years in recognizing
the needs of practitioners for codifying, disseminating, describing, and analyzing
architectural designs, there remain many, many open problems. Some of these prob-
lems might well be solved by better use of formalisms, provided they can bend to
the needs of the practice (and not the other way around). Here are some areas that
challenge current formalisms; they present promising research opportunities.



5.1 Heterogeneity

Practical systems are heterogeneous in structure and packaging. No matter how
desirable it may be for a system to be composed entirely from a single family of
compatible components, for most complex systems structural heterogeneity is in-
evitable. Strict adherence to a single style throughout a system is often impractical,
so articulation between styles will be required. Furthermore, components with the
desired functionality will often be packaged in different ways. Therefore, we need to
find ways to handle packaging incompatibility [GAO95].

Heterogeneity arises from multiple packaging standards, from legacy systems
that will not or cannot be rewritten, and from differences in usage within a sin-
gle standard. At present, many ad hoc techniques are used to compensate for the
incompatibility of parts. It would be useful to develop a systematic model that ex-
plains these and provides guidance for choosing the appropriate technique for a given
situation [Sha95].

5.2 Incomplete and Evolving Specifications
According to conventional doctrine, component specifications are

1. sufficient (say everything you need to know)
2. complete (are the only source of information)

However, architectural elements violate this doctrine. Architectural needs are
open-ended, and a designer cannot anticipate all the properties of interest. Specifi-
cations are incomplete and evolving. Moreover, gathering specification information
incurs costs; even for common properties, completeness may be impractical, and the
cost may be prohibitive for uncommon properties. Even worse, interesting properties
may emerge after a component is released (e.g., “upward compatible with Fenestre
version 4.5”) [GAO95].

Notably, we often make progress with only minimal information. Sometime we
can take advantage of new information when it comes along. A promising research
opportunity is understanding how to make architectural specifications partial, incre-
mental, and evolving. This entails adding new properties, declaring what properties
are required for specific kinds of analysis, checking consistency, and propagating
new information to improve old analyses. Work on using partial specifications will
help [Jac94, Per87], as will a fresh approach that views them as evolving entities
rather than static documents.

5.3 Extra-functional Properties

We have already noted the failure of most existing formalisms to handle properties
that go beyond the computational behavior of the system. It will be a challenge to
find formal systems for reasoning about the kinds of properties listed in 1.2 at an
architectural level.



5.4 Multiple Views

Complex specifications require structure, such as different segments for different
concerns. However, different concerns also lead to different notations. As indicated
in Sect. 4.2, this leads to a multiple-view problem: different specifications describe
different, but overlapping issues.

For example, formalisms that are good at accounting for dynamic properties of
architectures may not be good for performing static/global analyses. For example,
Wright (based on CSP) permits some powerful static checks of deadlock freedom,
but does not deal with dynamic creation of processes. On the other hand, Darwin
(based on the m-calculus) permits flexible description of dynamic architectures, but
1s less well-suited to proofs about absence of deadlock.

5.5 Classification and taxonomy

Software designers use a wide variety of styles, which are built up from identifiable
types of components and interactions (or connectors). In practice, we see an enor-
mous amount of variation on each of these themes. In order to be support checking
and analysis, the specifications must be much more precise than at present. A classi-
fication or taxonomy for styles, components, and connectors would be a major step
toward declaring and checking these structural types.
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