Skip to main content

Towards a theory of recursive structures

  • Chapter
  • First Online:
Computer Science Today

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1000))

Abstract

In computer science, one is interested mainly in finite objects. Insofar as infinite objects are of interest, they must be computable, i.e., recursive, thus admitting an effective finite representation. This leads to the notion of a recursive graph, or, more generally, a recursive structure, model or data base. This paper summarizes recent work on recursive structures and data bases, including (i) the high undecidability of many problems on recursive graphs and structures, (ii) a method for deducing results on the descriptive complexity of finitary NP optimization problems from results on the computational complexity (i.e., the degree of undecidability) of their infinitary analogues, (iii) completeness results for query languages on recursive data bases, (iv) correspondences between descriptive and computational complexity over recursive structures, and (v) zero-one laws for recursive structures.

A preliminary version of this paper appeared in STACS '94, Proc. 11th Ann. Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Vol. 775, Springer-Verlag, Berlin, 1994, pp. 633–645. The main difference is the addition of Section 5.

Incumbent of the William Sussman Chair of Mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul and V. Vianu, “Generic Computation and Its Complexity”, Proc. 23rd Ann. ACM Symp. on Theory of Computing, pp. 209–219, ACM Press, New York, 1991.

    Google Scholar 

  2. R. Aharoni, M. Magidor and R. A. Shore, “On the Strength of König's Duality Theorem”, J. of Combinatorial Theory (Series B) 54:2 (1992), 257–290.

    Article  Google Scholar 

  3. D.R. Bean, “Effective Coloration”, J. Sym. Logic 41 (1976), 469–480.

    Google Scholar 

  4. D.R. Bean, “Recursive Euler and Hamiltonian Paths”, Proc. Amer. Math. Soc. 55 (1976), 385–394.

    Google Scholar 

  5. R. Beigel and W. I. Gasarch, unpublished results, 1986–1990.

    Google Scholar 

  6. R. Beigel and W. I. Gasarch, “On the Complexity of Finding the Chromatic Number of a Recursive Graph”, Parts I & II, Ann. Pure and Appl. Logic 45 (1989), 1–38, 227–247.

    Article  Google Scholar 

  7. S. A. Burr, “Some Undecidable Problems Involving the Edge-Coloring and Vertex Coloring of Graphs”, Disc. Math. 50 (1984), 171–177.

    Article  Google Scholar 

  8. A. K. Chandra and D. Harel, “Computable Queries for Relational Data Bases”, J. Comp. Syst. Sci. 21, (1980), 156–178.

    Article  Google Scholar 

  9. A.K. Chandra and D. Harel, “Structure and Complexity of Relational Queries”, J. Comput. Syst. Sci. 25 (1982), 99–128.

    Article  Google Scholar 

  10. R. Fagin, “Generalized First-Order Spectra and Polynomial-Time Recognizable Sets”, In Complexity of Computations (R. Karp, ed.), SIAM-AMS Proceedings, Vol. 7, 1974, pp. 43–73.

    Google Scholar 

  11. R. Fagin, “Probabilities on Finite Models”, J. of Symbolic Logic, 41, (1976), 50–58.

    Google Scholar 

  12. W. I. Gasarch and M. Lockwood, “The Existence of Matchings for Recursive and Highly Recursive Bipartite Graphs”, Technical Report 2029, Univ. of Maryland, May 1988.

    Google Scholar 

  13. Y. V. Glebskii, D. I. Kogan, M. I. Liogonki and V. A. Talanov, “Range and Degree of Realizability of Formulas in the Restricted Predicate Calculus”, Cybernetics 5, (1969), 142–154.

    Article  Google Scholar 

  14. D. Harel, “Hamiltonian Paths in Infinite Graphs”, Israel J. Math. 76:3 (1991), 317–336. (Also, Proc. 23rd Ann. ACM Symp. on Theory of Computing, New Orleans, pp. 220–229, 1991.)

    Google Scholar 

  15. T. Hirst and D. Harel, “Taking it to the Limit: On Infinite Variants of NP-Complete Problems”, J. Comput. Syst. Sci., to appear. (Also, Proc. 8th IEEE Conf. on Structure in Complexity Theory, IEEE Press, New York, 1993, pp. 292–304.)

    Google Scholar 

  16. T. Hirst and D. Harel, “Completeness Results for Recursive Data Bases”, J. Comput. Syst. Sci., to appear. (Also, 12th ACM Ann. Symp. on Principles of Database Systems, ACM Press, New York, 1993, 244–252.)

    Google Scholar 

  17. T. Hirst and D. Harel, “More about Recursive Structures: Zero-One Laws and Expressibility vs. Complexity”, in preparation.

    Google Scholar 

  18. N. Immerman, “Relational Queries Computable in Polynomial Time”, Inf. and Cont. 68 (1986), 86–104.

    Article  Google Scholar 

  19. P. G. Kolaitis and M. N. Thakur, “Logical definability of NP optimization problems”, 6th IEEE Conf. on Structure in Complexity Theory, pp. 353–366, 1991.

    Google Scholar 

  20. A. Manaster and J. Rosenstein, “Effective Matchmaking (Recursion Theoretic Aspects of a Theorem of Philip Hall)”, Proc. London Math. Soc. 3 (1972), 615–654.

    Google Scholar 

  21. A. S. Morozov, “Functional Trees and Automorphisms of Models”, Algebra and Logic 32 (1993), 28–38.

    Google Scholar 

  22. Y. N. Moschovakis, Elementary Induction on Abstract Structures, North Holland, 1974.

    Google Scholar 

  23. A. Nerode and J. Remmel, “A Survey of Lattices of R. E. Substructures”, In Recursion Theory, Proc. Symp. in Pure Math. Vol. 42 (A. Nerode and R. A. Shore, eds.), Amer. Math. Soc, Providence, R. I., 1985, pp. 323–375.

    Google Scholar 

  24. A. Panconesi and D. Ranjan, “Quantifiers and Approximation”, Theor. Comp. Sci. 107 (1993), 145–163.

    Article  Google Scholar 

  25. C. H. Papadimitriou and M. Yannakakis, “Optimization, Approximation, and Complexity Classes”, J. Comp. Syst. Sci. 43, (1991), 425–440.

    Article  Google Scholar 

  26. R. Rado, “Universal Graphs and Universal Functions”, Acta Arith., 9, (1964), 331–340.

    Google Scholar 

  27. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.

    Google Scholar 

  28. M. Y. Vardi, “The Complexity of Relational Query Languages”, Proc. 14th ACM Ann. Symp. on Theory of Computing, 1982, pp. 137–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harel, D. (1995). Towards a theory of recursive structures. In: van Leeuwen, J. (eds) Computer Science Today. Lecture Notes in Computer Science, vol 1000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015255

Download citation

  • DOI: https://doi.org/10.1007/BFb0015255

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60105-0

  • Online ISBN: 978-3-540-49435-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics