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A b s t r a c t .  This paper presents a novel approach to the detection and 
recognition of qualitative parts like geons from real 2D intensity images. 
Previous works relied on semi-local properties of either line drawings or 
good region segmentation. Here, in the framework of Model-Based Opti- 
misation, whole geons or substantial sub-parts are recognised by fitting 
parametric deformable contour models to the edge image by means of 
a Maximum A Posteriori estimation performed by Adaptive Simulated 
Annealing, accounting for image clutter and limited occlusions. A num- 
ber of experiments, carried out both on synthetic and real edge images, 
are presented. 

1 I n t r o d u c t i o n  

In Computer Vision, the task of detecting and recognising general 3D objects in 
static scenes is still very far from a solution. 

One of the most relevant and early recognised approaches to overcome the 
limitations of traditional CAD-model based vision is the recognition by parts 
theory, pioneered by Marr and Binford [3], which provides both a paradigm and 
a computational model for computer vision as well as for human vision. 

Early at tempts to define part models notably included polyhedra, which 
turned out to be too simple, and generalised cylinders which turned out to be 
too general and not easily detectable from real images. 

Building on Lowe's work, Biederman's Recognition-by-Components (RBC) 
theory [2] provided a link between studies on human perception and computa- 
tional vision by proposing a novel part  classification scheme based on four sig- 
nificant non-accidental properties, cross-section shape, symmetry, sweeping rule 
and shape of axis, which were then used as a perceptual basis for the generation 
of a set of 36 components that  he called geometrical ions, or geons (examples of 
geons are shown in Fig. 1-right). 

There have been very few works that  aimed at the detection and recognition 
of geons. Bergevin [1] exploited precise properties of line drawings (such as T- 
junctions, corners, faces, etc.) and so did Hummel and Biederman [7] by mean 
of their elegant neural network implementation. In the approach by Dickinson et 
al. [4], aspects of geons were pre-compiled and stored in a hierarchical structure 
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and recognition performed by a probabilistic graph matching technique. Later, 
Metaxas et al. [13] built upon that work and both improved the segmentation and 
integrated stereo information to fit superquadrics models. The main drawback 
was that a good initial segmentation was required. 

This paper describes a new approach to the detection of qualitative parts 
such as geons in 2D images. The approach matches deformable contours of whole 
geons to the edge image of a scene. In contrast to other methods, ours is truly 
global, in the sense that the whole geon is holistically considered as a single entity 
to be extracted from the image. A new parametric model is introduced that 
allow us to represent compactly and efficiently the various geon outlines. Then, 
within the framework of Model-Based Optimisation (MBO), a cost function 
that represent the quality of fit between model and image is maximised in the 
parameter space by using Adaptive Simulated Annealing (ASA) and the best 
image-model match is found. The cost function expresses in Bayesian terms the 
probability that a certain number of edgels match the geon contour model and 
some others do not, which has also an analogy in information theoretical terms. 

At this stage of the research, the initialisation of the optimisation procedure 
is performed semi-automatically by manually selecting out the image regions cor- 
responding to parts and by computing the principal moments of the thresholded 
regions. 

The structure of the paper is as follows. First we describe the construction 
of geon contour models. Next we present the design of the objective function 
and how we perform its optimisation by Adaptive Simulated Annealing; some 
experimental results are given that support the validity of this approach. We 
conclude by proposing possible future extensions. 

2 P a r a m e t r i c a l l y  D e f o r m a b l e  C o n t o u r  M o d e l  o f  G e o n s  

Within the framework of Model-Based Optimisation, the recognition of geons 
from 2D images needs a model that can describe in a compact way their contour. 
As the geon models are computed inside the innermost loop of the optimisation 
process, this must be done as efficiently as possible. 

Following [14] and much recent work on part decomposition from range data 
(e.g. [16, 17, 15, 13]), we extend the use of superquadrics (SQ) to the 2D case 
by using their projected visible contour (outline) as a 2D model, thus creating 
a geon parametrically de]ormable contour model (henceforth PDCM). 

However, since a direct computation of SQ outlines is extremely expensive, 
we have pragmatically created an efficient approximate model that is suitable 
for qualitative geon PDCMs. Starting with a cylinder centred on the z axis with 
superelliptical cross-section, centred on the origin (Fig. 1-1eft) we apply defor- 
mations and rotations and find the outline by simple geometric considerations. 

The initial superelliptical cylinder C of height 2-az and semi-axes ax and ay can 
be expressed as 
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c = y ) = (,7) -< ,7 _< (1)  

where 0 < e < 1 controls the degree of squareness of the cross-section from a 
virtual block for e -~ 0 to a cylinder for e --~ 1. 

Any curve lying on this cylinder can be variously deformed. We use three 
types of deformations, taperin9 (T), bending (B) and swelling ($) along the 
principal axis. 

Let us indicate by x, y, z and X, Y, Z the vector of shape points before and 
after the deformations, respectively. Then we have: 

I, z = ~ z = sin(~)(,~ -~ - n") 

x = .  + , ~ g ~ ( ~ ) ( R  . . . . .  ( n  - ~)) 
= y + s i g n ( y ) ( R '  c o s  ol - -  ( R '  - -  o ' ) )  

= R ~ s i n  

where r=sign(c) cos(/~)X/r~ + y2, /3--arctan ~, R"=n-l-cos(7)(n - l - r ) ,  

z n - l =  a__. R'  (a~-~) a = a r c t a n v ~ -  ~ and 0 < s < 1, 7 =  ~1, icl, a-=a~s, = 2~ , 

--1 < c < 1 and - 1  < K ~ = K v <  1 are, respectively, the swelling, bending and 
tapering control parameters. 

The tapering and bending deformations have been derived from [16]; the 
latter has been slightly modified by normalising the bending control parameter 
to az, which has improved the stability of its estimation, and to allow bending 
on both sides. The swelling deformation, however, has been introduced here to 
represent the geons' "expanding and contracting" sweeping rule [2]. 

Once deformed, the shape is rotated in space (by 0pa,, 0tilt), projected (P) 
and roto-translated in the image plane (by t~ and t ,  and 0op,). The whole chain 
of transformations of the initial 3D shape C to its full projection onto the image 

planez-x C ' =  [ x ' ]  z~ is then: 

C' = T(Ru(P(R~(R~(I3(S(T(C, K~, K~), s), c), ~p~,,), 0t~u)), Oopt), t~, t~) (2) 

Now we are ready to describe the construction of the geons' PDCM. The knotti- 
est problem is to determine the occluding contour. For doing this, we employed 
the following approximation. 

We apply the transformations in Eqn. (2) to the two bases of the superellip- 
tical cylinder and take the four outermost points P ly ,  PI~ and P2~, P2~ (small 
circles in Fig. l-left-B) and find the two corresponding points in the original 
undeformed superellipses (small circles in Fig. 1-1eft-A). These two points are 
linked by two 3D straight lines L1 and L2, as shown in Fig. 1-1eft-A, and succes- 
sively deformed according to Eqn. (2); the resulting L1 ~ and L2 ~ (Fig. 1-1eft-B) 
will then be used as the two lateral parts of the occluding contour. 

By checking the projection of the normals n~ and nb to the superelliptical 
ends on the image plane, we can then determine whether each of the two ends 
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Fig. 1. Determination of occluding contour (left) and some examples of PDCM (right). 

are visible or not: if visible, the whole superellipse contour will be added in the 
geon PDCM; otherwise only its outermost part between PI~ (Ply) and P2" 
(P2~) will be included in the final PDCM. 

In the case we have a geon with squared cross-section ( say e < 0.5), the 
central edge is determined by joining the two corners P3a and P3b (Fig. 1-1eft- 
C) from the undeformed superelliptical bases occurring at 7 7 = lr/4 in Eqn. (1) 
by a 3D straight line and then deforming it by Eqn. (2); the resulting 2D curve 
is shown in Fig. 1-1eft-D. 

Some examples of geon PDCMs produced by this method can be seen in 
Fig. 1-right; it takes less than lms of a SPARC 10 machine to create a model 
instance, over two order of magnitudes faster that any other method that would 
use raster scan techniques or surface normals. 

This superquadric-inspired model can, as in [16, 17], represent the 12 geon 
classes which have cross-section symmetry [2] with a sufficient level of accuracy. 
However, by virtue of the employed geometric construction of the outline, they 
do not work properly with large bending or under certain viewing directions 
(about [0tiul> ~), where the occluding contour construction we employed is no 
longer applicable; despite this, it is a good trade-off between accuracy and speed. 

3 O b j e c t i v e  F u n c t i o n  D e s i g n  

Within the framework of Model-Based Optimisation, the matching of a PDCM 
to a geon image involves the minimisation of an objective (or cost) function that 
expresses the quality of image-model fit. 

Seeking the best interpretation of the available data by the model, we express 
this cost function in Bayesian terms. 

Let x i  = [ax ay az e K x  s c Opan Otilt Oopt P~ Pz] T be the vector of the PDCM 
parameters and Mi = M(xi) be a geon PDCM instance built as in Sec. 2, 
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expressed in term of pixels by a set of (i , j)  pairs. Furthermore, let I be the 
original image and E the corresponding binary edge image: E(i, j) is zero if no 
edge has been detected at I(i,j). 

From the Bayes rule, the MAP estimate of the best model-image fit Mb~st = 
M(xbCs~) occurs for 

Xbest : m a x { P ( M i ] E ) } =  min { - l o g ( P ( E ~ _ M i ) P ( M i )  ) }  
x, eX x, eX \ E j P ( E I M i )  P(M~) , (3) 

with the denominator constant over X, which is the set of hypotheses produced 
by the optimisation procedure. 

The following two subsections describe how we defined the model-conditional 
image and prior probabilities. 

3.1 Model-Condit ional  Image Probability 

In Eqn. (3), P(E I Mi) expresses the conditional probability of having particular 
image evidence in the presence of the model. 

Earlier experiments using various techniques based on sum of distances be- 
tween model and edges (as used by Lowe [12] and others) had problems of un- 
wanted shrinking or expansions so we concluded that they cannot properly cope 
with the use of deformable models and sparse unsegmented data. Our approach 
is to find the model that best accounts for the image in terms of matched and 
unmatched edgels. 
Let 

Em(Mi) = {(k,/) : I ( i , j ) -  (k,I)l< d, (i,j) E i i }  

be the d-neighbourhood of the model contour Mi, and ED(Mi) = E - Em(M~) 
the rest of the edge image which is not covered by it (background); henceforth 
we drop the Mi arguments wherever there cannot be ambiguities. 
Let Nbl and Nb0 be the number of pixels in the background Eb that are edge 
("1") or non-edge ("0"). On the other hand, in the model neighbourhood Em, 
and Nml the number of edgels whose direction is locally consistent with that of 
the model Mi at that point (we set a threshold of u/10); furthermore let Nm0 
be the number of pixels in E,~ that are not matching the model, either because 
no edge has been detected there or because of directional inconsistency. 

The model conditional probability P(E I Ms) globally expresses the proba- 
bility of the presence or absence of edge points or consistent edgels in Eb and 
Era. Since Eb and Em can be regarded, to a first approximation, as realizations 
of two independent binary ergodic processes, whose probabilities are given by 
the product of single local outcome probabilities Pbl and Pro1, respectively, we 
have: 

P(EIMi ) : P(Eb[Mi).P(E,,[Mi) = [pbYbl ( 1 -  pb~)Nb~ pml)Nm~ . 

The value of Phi is given by the ratio between edge locations and the number 
of pixels in the image (typical values: 0.02-0.06); Pro1 ranges from 0.6 to 0.9, 
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Fig. 2. Model prior probabilities. 

depending on the neighbourhood dimension d and how good the edge detection 
of object contour is expected to be. By taking the logarithms on both sides and 
expanding we obtain: 

log(P(EI  Mi)) = log(P(Eb I Mi))  + log(P(Em IMp)) = (4) 

K + [Nml log(pro1) + Nmo log(1 - Pml)] -- [N-u 1og(pbl) + Nmo log(1 - Pbl)], 

where K is a constant term that  can be dropped in the MAP estimation. 
The terms of this equation can be also reinterpreted as the number of bits 

"saved" by representing E by the model Mi bringing all into an information 
theoretical framework (see, e.g., [6, 11]). 

3.2 Mode l  A Priori Probabil ity 

Within a Bayesian framework we can assign an occurrence probability P ( M i )  of a 
certain PDCM, called the model a priori probability. The reasons for introducing 
it are essentially three: i) some parameter configuration are unlikely to occur 
(such as a bent and swollen object); ii) Certain configurations of parameters 
arise from a weird view point that  would make detection impossible; and iii) 
It biases the fitting to more perceptually likely shapes. These considerations 
are both practical and also correspond to sensible assumptions to reduce the 
quantitative shape ambiguities caused by the projection. 

We have defined a sensible heuristic to represent these loose constraints. The 
probability of each PDCM is expressed by overlapping (multiplying) marginal 
densities of parameter values or combination of them, tacitly assuming statisti- 
cal inter-independence. The parameters we took into considerations are ax, au 
and az, swelling, bending and the viewpoint angles; the tapering and roundness 
parameters have not been taken into account and thus are given uniform prob- 
abilities. Below we describe these probabilities, whose non-normalised p.d.f, are 
also displayed in Fig. 2. 

- P(Otiu, Ovan) = N(Otiu - "~, ao,,,,). N(O~iu + -~, ao,,,,).  N(Opan - -~, o'op,,,~) 
In our perception [2] there is a bias towards objects or surfaces in canonical 
stable positions. P(Otitt, Opan) has therefore probability density like the one 
shown in Fig. 2-A for a0,,, = a0~o. = ~r/6, which has two Gaussian bells 
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in correspondence to the most likely values of 8tat = ~r/4, Otat= -7r/4 and 

- P(a~,au)  = g ( I  a~-au  I, Ga~,ay) 
This favours more compact cross-sections rather than weird rotation angles 
to account for the ambiguity caused by the projection and basically gives 
higher probability for a~ close to au, as shown in Fig. 2-B for an.,% = 20. 

{ N(TI~+%I a z , a ~ z ) i f a z <  - I~+%1 - -  T -  2 

- P(a~ l a~,ay) = 1 otherwise 
V / ~ .  ~ra z 

This favours elongated geons by giving lower and lower probability if its 
length is smaller than the average of cross-section dimensions by a factor T, 
as shown in Fig. 2-C for 7- = 1.5 and a~. = 20 

- P ( c ,  s )  = N(] c J . s ,  a~,~). 
This expresses the perceptual incompatibility between high swelling and 
bending; the p.d.f, is shown in Fig. 2-D for a~,~ = 0.3. 

Now that we have all the non-normalised p.d.f, and given the assumption of 
prior inter-independence between parameters, we just multiply them together to 
obtain the (non-normalised) a priori p.d.f, of the model: 

log(P(M~)) = H + log(P(~tat,  ~?pan)) + log(P(a~, ay)) + 

log(P(a~ I a, ,  a~)) + log(P(c, s)) (5) 

The normalisation constant H is unnecessary because it does not affect the MAP 
estimate. 

We wish to remark that there are other possible ways of defining the model 
prior probability and that we could also incorporate more detailed specific domain- 
dependent knowledge about the scene structure. 

4 Mode l  Fi t t ing Procedure  

The model fitting is obtained, from (3), by the minimisation of 

- l og (P (Mi  I E)) = - l o g ( P ( E  I Mi)) - log(P(Mi)) ,  (6) 

where the two terms are given by Equations (5) and (4). This minimisation is, 
however, rather difficult to achieve, since it is extremely irregular and presents 
many shallow and/or narrow minima. By trying to minimise Eqn. (6) alone, we 
also found that sometime the optimisation got stuck in local minima because 
of the step-like nature of the model-conditional probability of Eqn. (4) (remem- 
ber we used a binary "belonging to the model" criteria). For overcoming this 
problem we have added to Eqn. (6) a small smoothing term representing the av- 
erage minimal distance between contour model and image edge points (we used 
a minimal distance transform computed off-line). The smoothing term does not 

2 0ti~ and 0p~ affect the topology of the PDCM and these values can be regarded 
also as giving the high disambiguation distance between visual events [9]. 
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ax ay az e Ks s c Op,.~ (~t~u (~op~ P~ Pz 

Lower -5% -5% -5% .01 -1.0 0.0 -O.S (Op. .  - 0.3) (0 ,~ ,  - 0.3) (Oop, - 0.4) : r ~ %  :1~% 

upper +5% +5% +5% .99 1.0 1.0 o.s (~ . .  + 0.3) (~,~ + 0.3) (~o~, + 0.4) -~% -+r~-% 
A 1.0 1.0 1.0 0.2 0.2 0.2 0.1 0.05 0.05 0.05 1 1 

Table 1. Ranges and gradient steps used in the optimisation procedure. 

affect the MAP estimate but just helps convergence in cases where image and 
model are much displaced and the numerical computation of the gradient be- 
come meaningless due to the low number of edge points falling inside the model 
neighbourhood. This term can then be seen as "telling the optimiser where to 
go" in absence of other information. 

In early stages of the work we used a Levenberg-Marquandt method with 
added random perturbations as used in [16] and other works, but  this approach 
had difficult convergence. Our choice fell then to Simulated Annealing [10], which 
is a powerful optimisation tool that  efficiently combines gradient descent and con- 
trolled random perturbations to perform the minimisation of non-convex func- 
tions. We used a recent publicly available version of Simulated Annealing called 
Adaptive Simulated Annealing (ASA) [8]. 

The initialisation and set-up of the ASA algorithm is discussed below. 

INITIALISATION The initialisation part  is concerned with estimating initial 
coarse part hypotheses (sometime called frames) that  comprise position, orien- 
tat ion of the major axis and dimensions. This initialisation need not be precise 
and the degree of allowed inaccuracy depends upon the power of the optimisa- 
tion procedure. Since no method is currently available for segmenting qualitative 
parts from 2D real cluttered images, we have used a semi-automatic procedure. 
Regions corresponding to parts are first selected out manually (see Fig. 4) and 
an adaptive thresholding technique is used to yield blob-like regions; orientation 
and size are found by computing the first and second moments and principal 
directions of the blobs, which are assigned to Px,  P~, as, ax = ~y and -~opt, 
respectively. The values of ~x and ~y are set to be equal because we do not 
have prior information on the aspect-ratio of the part cross-section. Moreover 
tapering, bending and swelling are all initially set to zero, ~pan = 0 and -~tut 
experimentally set to lr/6. 

OPTIMISATION SET- UP The bounds of the hyper-rectangular search space 
and the step for the computation of the gradient, needed by the ASA optimiser 
greatly affect the nature of the convergence. Table 1 summarises the values 
we found reasonably good through our experiments. (The values expressed in 
percentage are relative to their respective initial values and N is the image 
resolution in pixels) 

The two parameters specifying the annealing schedule, the Temperature Ra- 
tio Scale and Temperature Annealing Scale [8] have also been experimentally 
set to 5 �9 10 -5 and 50, respectively, and the Cost Precision to 0.0001. Finally, 
the number of iterations has been set to 2000, which we found to be a good 
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trade-off between speed and good convergence. The neighborood distance d was 
set to 6 pixels for 512x512 images and to 2 pixels for 128x128 images. Each ASA 
running time ranged from 5 to 15 secs on a SPARC 10 machine, according to 
image resolution. 

5 E x p e r i m e n t a l  R e s u l t s  

In this section we present two sets of experiments that show the validiy of the 
approach. 

In the first set, shown in Fig. 3, a 512x512 image of six plasticine isolated 
geons was taken (Image C) and, after the application of a Canny Edge de- 
tector, no post-processing was carried out (Image C-left). From it, we created 
two synthetic edge images with the same geons but with roundish (Image A) 
and squared (Image B) cross-sections. The initializations (unique for each geon 
across Images A,B and C and overlapped to the edge images in the left figures) 
are rather crude; for the synthetic images the right aspect topology was imposed 
to each instance whereas it was set free for Image C. It can be seen that with 
synthetic images the results (displayed in the right column) are rather good in 
both examples. The results with real images are reasonably good too, considering 
that we intentionally left a high cluttering level; geon #1,#4 and #6, however, 
have been slightly misfit due to intollerably high noise within the geon body 
that, in particular, caused a change in topology. 

In the second set, shown in Fig. 4, two real 128x128 images of an handset, a 
mug and a banana were used, and their edge images produced by a Canny edge 
detector and simple filtering (top); initializations are performed as outlined in 
Sec. 4 and are displayed in the middle row. In the case of the handset, three good 
estimates were produced although the edge image is cluttered and incomplete. 
Except for the mouth piece, which is slightly over-swollen, the essential qualita- 
tive features of the geons (such as cross-section and curvature) are extracted. The 
experiment with the banana is succesfull too, but, of course, because of the long 
shading edge running along its body, the fitting yielded squared cross-section. 
This spurious effect can be overcome only by integrating further information. 
The mug example was, as expected, a failure because both the initialization and 
edge image were excessively poor, undistinguishable even to the human eye. 

6 C o n c l u s i o n  a n d  F u t u r e  W o r k  

In this paper we have presented a novel method for the fitting of generic geon- 
like parts to 2D edge image. We developed a new efficent approximated model 
of superquadrics contour that, in the framework of Model-Based Optimisation, 
is fitted to the image by a MAP estimation procedure which seeks the best 
interpretation of the available data in terms of the model. Some experiments 
have been described that show the validity of the approach. 

Single parts are currently semi-automatically selected out from the image, 
since no methods is available for authomatically doing it from real images, but we 
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Fig.  3. First set of experiments designed to assess the convergence of the method (see 
text for details). 
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F ig .  4. Second set of experiments with semi-automatic initialization (see text  for de- 
tails). 
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are actively investigating into the problem. Furthermore, early experiments using 
different aspect topologies [5], have shown a substantial  increase in robustness. 
We are also planning to integrate other information, such as shading, to further 
increase stability and convergence. 

Acknowledgements: Thanks to A. Fitzigibbon for useful suggestions. 
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