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A b s t r a c t .  We present methods for the global reconstruction of some 
classes of special surfaces. The contour ending (cusp on the apparent 
contour) is tracked under a dynamic monocular perspective observer. 
The classes of surfaces considered are surfaces of revolution (SOR), canal 
surfaces and ruled surfaces. This paper presents theoretical methods for 
surface reconstruction and error analysis of reconstruction under noise. 
We find the techniques used exhibit stability even under large noise. 
This work has added to the accumulating body of work that has arisen 
in the computer vision community, concerning the differential geometric 
aspects of special surface classes. 

1 I n t r o d u c t i o n .  

We present methods for the global reconstruction of some classes of special sur- 
faces by tracking contour endings (cusps) 1 of the apparent  contour (also known 
as the profile and the occluding contour) under a known dynamic monocular 
perspective observer. 

There has been considerable interest in the vision community concerning 
families of surfaces ([1], [6], [7], [10], [13], [14] for instance). Much of the l i terature 
exploits rich image features, such as inflections, bitangents, the symmetry  set, to 
aid reconstruction and viewpoint-invariant representation. While there have been 
some theoretical results concerning the cusps of apparent  contours on special 
surfaces [11],[12], there has been little exploitation of the geometry with regard 
to reconstruction. 

We examine surfaces of revolution (SOR), canal surfaces (piped) and ruled 
surfaces. Each of these special types of surface is generated in a special way by 
a moving curve. For example the ruled surface is generated by a sweeping line, 
the SOR generated by a varying radius circle centred on a straight line and the 
canal surface is described by sweeping a circle along a space curve, keeping it 
in the normal plane. (The canal surface can also be considered as an envelope 
of spheres of constant radius centred along a space curve). If we can recover 
the generator curve then we recover part  of the original surface, even resulting 
in areas that  are unseen and beyond the frontier [5]. We recommend [9] for an 
introduction to the differential geometry of the above classes of surfaces. 

1 We use the terms 'contour ending' and 'cusp' synonymously. A cusp is observed in 
the image for a transparent surface and for brevity we often refer to 'cusps'. 
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For each class of surface we provide simulated experiments that  illustrate the 
technique and demonstrate the stability of the reconstruction under extremely 
noisy data. This simulates the uncertainty in the detection of the contour ending 
that  is present in any practical situation. A contour ending can be seen in Figure 
1 where it appears as a dark blob, but the observed location is subject to error. 

Fig. 1. Canal surface with a T-junction and a contour ending magnified on the right. 

2 B a c k g r o u n d .  

For smooth curved surfaces an important image feature is the apparent con- 
tour or profile. This is the projection of the locus of points on the surface which 
separates the visible from occluded parts. Under perspective projection this 
locus-- the contour generator or critical set--can be constructed as the set of 
points on the surface where rays through the projection centre c are tangent to 
the surface. Each viewpoint will generate a different contour generator with the 
contour generators 'slipping' over the visible surface under viewer motion. This 
is the familiar situation of [2]. 

The projection of the contour generator in the image sphere or image plane 
gives a curve called the apparent contour or profile. This paper is concerned with 
the situation when the apparent contour ends, or cusps. It is well known (e.g. 
[8, p.422]) that  the apparent contour cusps if and only if the viewing direction is 
along an asymptotic direction and this is equivalent to the view direction being 
tangent to the contour generator. Recall that  a hyperbolic surface patch has two 
asymptotic directions, and if we extend these directions indefinitely we expect 
the lines to fill a region of space. Thus any camera position in that region will 
lie on some asymptotic direction and hence we expect to see cusps in the image. 

We recall some results concerning the tracking of cusps from [3]. 
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Fig. 2. Cusp generator on a smooth surface. 

2.0.1 De f in i t i on :  If  a point r is on the contour generator and projects in the 
image to a cusp point then r is said to be a c u s p  g e n e r a t o r  p o i n t .  As the 
camera moves the locus of cusp points in the image is the c u s p  locus ,  and the 
locus of cusp generator points on the surface is the c u s p  g e n e r a t o r  cu rve .  See 
Figure 2. 

The following proposition informs us that  by tracking cusps we can reconstruct 
a surface strip (i.e. a curve with surface normals) complete with the second 
fundamental  form at the cusp generator points. The main results of this paper  
concern the extending of this surface strip globally, in a certain sense, for certain 
classes of surfaces. 

As in [3] we consider the camera measurements to be in unrotated world 
coordinates. Using an image sphere with centre c for mathemat ical  convenience, 
c + p is the position in world coordinates of a point on the apparent  contour. 
The unit vector p runs from the centre of the sphere to the apparent  contour. 

2.0.2 Proposit ion:J3] If  the camera motion is c(t), the cusp generator curve 
r( t) ,  the cusp locus p(t) ,  the surface normal (equal to the apparent contour nor- 
mal) at the cusp point n, with r = c + )~p then, 

C t . n  

p t .n  

K -- - ( P t ' n ) 4  
[p, ct, pt] 2 

H : p~.n(ct~.n p t . n  - c t .n  ptt .n - 2p.c t (p t .n)  2) 
2[p, ct,  pt]  2 

where A is the depth, K is the Gauss curvature and H is the Mean curvature, 
and the suffix denotes differentiation with respect to t. 
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A major  practical concern is the actual detection of contour endings. Recognising 
this we provide simulations using large uncertainties in the position in the image 
of the contour ending, typically ten pixels. We have reported elsewhere [4] of the 
stability of the formulas in Proposit ion 2.0.2 under image uncertainty, and the 
stability is high even under extreme noise. 

3 S u r f a c e s  o f  R e v o l u t i o n .  

3.1 Theory. 

n ~ 

/ 

n 

\ c(t) 

Fig. 3. Left figure: apparent contour (projected on to image sphere) and contour gen- 
erator (on surface) shown for a particular value of t. Observe the cusp generator pair 
r and r '  on the same parallel. Right figure: cusp generator pair r and r ~ on a surface 
of revolution with surface normals n and n' intersecting on the axis. 

We now show that  by tracking a cusp pair on a surface of revolution (SOR) 
global information about  the surface can be found. More specifically, we assert 
that  by tracking the cusp pair over parallels of our SOR we can reconstruct those 
parallels. A parallel (section) of a SOR is a plane section of a SOR perpendicular 
to the axis of rotation. It  is a plane circle. 

We shall need the following facts. 

3.1.1 Fac t :  I f  the point r generates an ordinary cusp for  a certain camera 
position then there exists another point r J on the same parallel with the same 
depth to the camera that also generates a cusp. Note  that the surface at r is 
congruent to that at r ~, in particular the Gauss curvatures are equal. See Figure 
3. 

This fact tells us that  cusps always appear  in the image in pairs, and resulting 
from the same parallel. The following facts will be used in the reconstruction 
process. 
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3.1.2 Fac t :  The normals to a S O R  along a parallel all intersect  at a point  on 
the axis, see Figure 3. 

The basic reconstruction technique is as follows. 

1. We observe a cusp pair in the image. Note that  cusp pairs from the same 
parallel on the SOR have equal depths and Gauss curvatures by Fact 3.1.1, 
so we can easily verify from the image which of the cusps we observe do in 
fact arise from the same parallel. 

2. We reconstruct the depth using Proposition 2.0.2 to get two points r, r t these 
are the so-called cusp-generator points. 

3. The surface normMs are preserved under perspective projection to an image 
sphere, and so extending the normals at r and r ~ points must give us an 
intersection on the axis by Fact 3.1.2. 

4. Tracking the cusps over time gives us the reconstructed axis. 
5. The  parallel through r is then the circle perpendicular to the axis with centre 

on the axis and passing through r. 

As our camera moves the cusp pair sweeps Mong the parallels and we are able 
to reconstruct them. 

3.2 E x p e r i m e n t .  

It  is clear that  in practice this technique will be susceptible to errors. The image 
may contain several cusps but it is straightforward to select the correct pair 
since these cusps arise from points on the surface having the same depth and 
Gaussian curvature (see Proposition 2.0.2). This provides a consistency check. 

In practice when we reconstruct the cusp generator points and extend the 
normals we find they do not quite intersect. We take the nearest point in this 
instance and fit an axis to the noisy points. 

The reconstruction technique was tested for different amounts of error in 
the observation of the cusp images. An error of x degrees means that  up to x 
degrees of Gaussian noise was added to the cusp locus on the image sphere to 
give a noisy locus. For a camera with a focal length of 20mm and pixel density of 
500pixels per 5mm, we find that  an angular separation of 0.03 degrees is about  
1 pixel. For the following SOR experiments errors of 0.3 degrees (10 pixels) and 
0.6 degrees (20 pixels) were used. 

We now produce some simulated examples which demonstrate  the recon- 
struction technique. The surface used was the following, 

r(s ,  O) = ((1 + s 2) cos 0, (1 + s 2) sin O, s) 

and the camera motion, 

c(t) = (10 + 2t, 0.3t + 0.1t 2, - 5  + 4t). 

Note that  the axis of the SOR is the z-axis (0,0,1). We observed a cusp pair 
at discrete times and added some Gaussian noise of various amounts.  This was 



112 

then smoothed with a cubic curve via a least-squares method to give the observed 
cusp loci. The depth was calculated and then the nearest intersection point to 
the normals was calculated. This gave points on the SOR axis, and a straight axis 
was fitted. The parallels could then be generated resulting in a radius function 
that  could then be smoothed giving a complete SOR. 

We now illustrate some of the results for an error of 0.3 degrees and 0.6 
degrees. The reconstructed axis for an error of 0.3 degrees was calculated as 
[.051 - .001u, - . 0 1 3 +  .003u, -1 .198+  .999u], recall that  the actual axis is [0, 0, u]. 
The axis for 0.6 degrees is [.158-.012u, - .074+.013u,  -1.142+.999u].  See Figure 
4. 

Fig. 4. Actual surface (cut away) compared with recovered surface (0.3degs) (left). 
Actual surface (cut away) compared with reconstructed surface (0.6 degs) (right). 

4 C a n a l  S u r f a c e s .  

4.1 T h e o r y  

Let v(t) be a space curve and N(t)  be its principal normal and B(t) be the 
binormal. Then the standard parameterisation for a canal surface is the following: 

r(t ,  0) = v(t) + r(N(t)  cos 0 + B(t)  sin ~). 

We can also think of the canal surface as an envelope of a family of spheres of 
radius r centred on v(t). 

4.1.1 Def in i t ions .  The space-curve 7 is the core  cu rve ,  the ]actor r is the 
(constant) r a d i u s  of the canal sur]ace. The circle 7( to )+r( N ( to ) cos 0+ B( to ) sin ~) 
is the c h a r a c t e r i s t i c  c i rc le  ]or t = to. 
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We assert that  by tracking a single cusp along the canal surface we can recon- 
struct the characteristic circles (and hence the complete surface) as the cusp 
sweeps along the surface. We note that  this reconstruction technique works with 
incomplete viewer information, such as when only one 'side' of the canal surface 
is visible. We shall need the following fact. 

4.1.2 Fac t :  

1. The radius of a canal surface can be expressed in terms of the Gaussian 
H_ H2V-H~_K curvature K ,  and the Mean curvature H ,  as r = K 

2. The normal  to a canal surface at a point p passes through the centre of the 
characteristic circle of p. 

Recall that  we can calculate K and H from tracking cusps using Proposit ion 
2.0.2 and so can recover the radius. The reconstruction technique is as follows, 

1. Track cusp to recover depth, Gaussian and Mean curvature. 
2. Calculate the radius r via 4.1.2. 
3. Using the recovered depth we can recover the cusp generator point and then 

move along the normal a distance r to recover the core curve by 4.1.2. 
4. The core curve and radius completely determine the canal surface. 

4.2 E x p e r i m e n t .  

We simulate the reconstruction process with a simple example. Again noise will 
be added to the image of the cusp points to simulate the uncertainty in detecting 
the cusp points. Figure 5 shows the cusp points on the image sphere in the ta /ph i  
coordinates. The core-curve used will be, 3'(t) = (2t, 0.6t 2, 0) and the radius 1. 
Note that  the core curve of this canal surface is planar; this is just to simplify 
the calculations and does not imply a restriction inherent in the technique used. 
An error of 0.5 degrees was added in this example and the recovered radius was 
0.973. It is difficult to quantify the error in the core curve, but Figure 6 shows the 
actual and recovered core curves. The recovered and actual surfaces are shown 
in Figure 6. It  is unclear how best to empirically measure the 'success' of the 
reconstruction, other than simply a visual inspection. Figure 7 shows a series 
of experiments performed on different canal surfaces all with radius one, and 
varying camera motions. The horizontal axis indicates increasing noise added, 
and the vertical axis shows the recovered radius. A deviation from a radius 
equal to one, shows the effect of the noise. We don' t  expect this relationship to 
be simple since the radius depends on second derivatives of the cusp locus (Fact 
4.1.2). We merely wish to assess the stability under large noise. 

5 R u l e d  s u r f a c e s .  

5.1 T h e o r y .  

We now consider tracking a cusp on a ruled surface. As the cusp sweeps across 
the rulings we find that  we are able to reconstruct the rulings and hence the 
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Fig. 5. Image of noisy cusp points with a cubic curve fitted. 

whole surface. The crucial observation is contained in the following fact from [8, 
p.361]. 

5.1.1 Fac t :  If  the angle between asymptotic directions at a hyperbolic point of 
a surface is r then tan r = H 

By tracking cusps we can recover K,  H,  the depth, the surface normal and one 
asymptotic direction (namely the view direction). Recall that  for a ruled surface 
one asymptotic direction is always along the ruling and K < 0. The ingredients 
are now all present along with Fact 5.1.1, and the recipe is now given. 

1. Track cusp and recover the depth, K and H.  
2. The view direction is one asymptotic direction and the other is the ruling. 

Calculate the angle between them by Fact 5.1.1 and since we know that  the 
ruling lies in the tangent plane this constrains it. 

3. This gives the direction of the ruling, and it passes through the cusp gener- 
ator point which can be recovered with knowledge of the depth. 

Figure 7 shows the result of a reconstruction experiment on a ruled surface where 
the maximum Gaussian error in observed cusp points was 0.3 degrees. 

6 C o n c l u s i o n  

We have shown that the cusps on the apparent contours of certain classes of 
smooth surfaces give enough information to enable the complete reconstruction of 
the surface by tracking cusps alone. This work has built on the theory developed 
in [3]. 
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Fig.  6. Actual and recovered core curves (left), and actual and recovered surfaces 
(right). Note that the scale and orientation are different on left and right. 

� 9  0.~1 U 2  (~x E 4  C r, 

Fig.  7. Left figure: increase in maximum angular error of cusp points (horizontal) with 
recovered radius of canal surface (vertical). Right figure: actual and reconstructed ruled 
surface with an error of 0.3 degrees. 
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Recognising that  cusps are hard to detect in real images we have given an 
error analysis that  demonstrates the stability of the reconstruction even under 
large image perturbation. 

Future work will include extending the methods to other classes of special 
surfaces, and the analysis of real image data. 
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