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A b s t r a c t .  The retrieval of images from a large database of images is an 
important and emerging area of research. Here, a technique to retrieve 
images based on appearance that works effectively across large changes 
of scale is proposed. The database is initially filtered with derivatives 
of a Gaussian at several scales. A user defined template is then created 
from an image of an object similar to those being sought. The template 
is also filtered using Gaussian derivatives. The template is then matched 
with the filter outputs of the database images and the matches ranked 
according to the match score. Experiments demonstrate the technique on 
a number of images in a database. No prior segmentation of the images 
is required and the technique works with viewpoint changes up to 20 
degrees and illumination changes. 

1 I n t r o d u c t i o n  

The advent  of mul t i -media  and large image collections in several  different do- 
mains brings forth a necessity for image retrieval systems.  These  systems will 
respond to visual queries by retrieving images in a fast and  effective manner .  
The  appl ica t ion  potent ia l  is enormous; ranging from da t abase  management  in 
museums and medicine, archi tectural  and interior design, image archiving,  to 
construct ing mul t i -media  documents  or presentations[3]. 

Simple image retr ieval  solutions have been proposed,  one of which is to  an- 
no ta te  images with text  and then use a t radi t ional  t ex t -based  retr ieval  engine. 
While  this solution is fast, it  cannot however be effective over large collections 
of complex images. The variabil i ty and richness of in te rpre ta t ion  is quite enor- 
mous as is the  human effort required for annotat ion.  To be effective an image 
retr ieval  system should exploit  image a t t r ibutes  such as color d is t r ibut ion ,  mo- 
tion, shape [1], s t ructure,  texture  or perhaps user drawn sketches or even ab- 
s t rac t  token sets (such as points,  lines etc.). Image retr ieval  can be  viewed as an 
order ing of match  scores tha t  are obtained by searching th rough  the da tabase .  
The key challenges in building a retrieval system are the  choice of a t t r ibu tes ,  
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Fig. 1. Construction of a query begins with a user marking regions of interest in an im- 
age, shown by the rectangles in (i).The regions of interest and their spatial relationships 
define a query, shown in (ii). 

their representations, query specification methods, match metrics and indexing 
strategies. 

In this paper a method for retrieving images based on appearance is pre- 
sented. Without resorting to token feature extraction or segmentation, images 
are retrieved in the order of their similarity in appearance to a query. 

Queries are constructed from raw images, as illustrated in Figure 1. The 
regions in Figure l(ii) along with their spatial relationship are conjunctively 
called as the query 1. Images are then retrieved from the database in the order of 
their similarity of appearance to the query. Similarity of appearance is defined 
as the similarity of shape under small view variations. The proposed definition 
constrains view variations, but does not constrain scale variations. 

A measure of similarity of appearance is obtained by correlating filtered rep- 
resentations of images. In particular a vector representation(VR) of an image 
is obtained by associating each pixel with a vector of responses to Gaussian 
derivative filters of several different orders. To retrieve similar looking images 
under varying scale a representation over the scale parameter is required and 
scale-space representations [6] are a natural choice. Lists of VRs generated using 
banks of Gaussian derivative filters at several different scales form a scale-space 
representation [6] of the object. A match score for any pair of images is obtained 
by correlating their scale-space vector representations. 

Thus, the entire process of retrieval can be viewed as the following three- 
step process. The first is an off-line computation step that  generates VRs of 
database images for matching (described in Section 3). The second is construc- 
tion of queries and their VRs (described in Section 5). The third is an ordering 
of images ranked by the correlation of their VRs with that  of the query (de- 
scribed in Section 4). In Section 6 experiments with this procedure demonstrate 
retrieval of similar looking objects under varying scale. 

While one is tempted to argue that retrieval and recognition problems have 
a lot in common, one should also note the sharp contrasts between the two 
paradigms. First, putting a user in the "loop" , shifts the burden of the deter- 

1 The retrieved images for this case are shown in Figure 3. 
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mination of feature saliency to the user. For example, only regions of the car 
in Figure l(i) (namely, the wheels, side-view mirror and mid-section) considered 
salient by the user are highlighted. Second, user interaction can be used in a 
retrieval system of sufficient speed to evaluate the ordering of retrieved images 
and reformulate queries if necessary. Thus, in the approach presented in this pa- 
per, alternate regions could be marked if the retrieval is not satisfactory. Third, 
a hundred percent accuracy of retrieval is desirable but not at all critical (for 
comparison the best text-based retrieval engines have retrieval rates less than 
50%). The user ultimately views and evaluates the results, allowing for tolerance 
to the few incorrect retrieval instances. 

2 R e l a t e d  W o r k  

A number of researchers have investigated the use of shape for retrieval [1, 9, 10]. 
However, unlike the technique presented in this paper, these methods all require 
prior segmentation of the object using knowledge of the contour or binary shape 
of the object. 

It  has been argued by Koenderink and van Doorn [5] and others that the 
structure of an image may be represented using Gaussian derivatives. Hancock 
et al [4] have shown that the principal components of a set of images contain- 
ing natural structures may be modeled as the outputs of a Gaussian and its 
derivatives at several scales. That is, there is a natural decomposition of an im- 
age into Gaussian derivatives at several scales. Ganssians and their derivatives 
have, therefore, been successfully used for matching images of the same object 
under different viewpoints (see [12] for references). This paper is an extension 
to matching "similar" objects using Gaussian derivatives. 

3 M a t c h i n g  V e c t o r  R e p r e s e n t a t i o n s  

The key processing involves obtaining and matching vector-representations of a 
sample gray level image patch S and a candidate image C. The steps involved 
in doing this will now be described: 

Consider a Gaussian described by it's coordinate r and scale a 

1 _ 2 

a = (1) 

A vector-representation I of an image I is obtained by associating each pixel 
with a vector of responses to partial derivatives of the Ganssian at that  location. 
Derivatives up to the second order are considered. More formally, I takes the 
form (Ix,I~,Izx,Iz~,I~y) where Iz, Iy denote the the filter response of I to the 
first partial derivative of a Ganssian in direction x and y respectively. I==,I=~ 
and I ~  are the appropriate second derivative responses. The choice of first and 
second Gaussian derivatives is discussed in [12]. 

The correlation coefficient rl between images C and S at location (m, n) in 
C is given by: 

(m,  = d M  D "  S'M - n - j )  (2) 
i , j  
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Fig. 2. I1 is half the size of I0. To match points po with pl, Image Io should be filtered 
at point Po by a Gaussian of a scale twice that of the Gaussian used to filter image 11 
(at Pl). To match a template from I0 containing p0 and q0, an additional warping step 
is required. See text in Section 4. 

where 
s (i, j) - s ~  

S'M ( i , j )  = IIS ( i , j )  - SMII 

and SM is the mean of S (i, j )  computed over S. C~M is computed similarly from 
C ( i , j ) .  The mean CM is in this case computed at (m,n) over a neighborhood 
in C (the neighborhood is the same size as S). 

Vector correlation performs well under small view variations. It  is observed 
in [12] that  typically for the experiments carried out with this method, in-plane 
rotations of up to 20 ~ out-of plane rotation of up to  30 ~ and scale changes of 
less than 1.2 can be tolerated. Similar results in terms of out-of-plane rotations 
were reported by [11]. 

4 M a t c h i n g  Across Scales 

The database contains many objects imaged at several different scales. For 
example, the database used in our experiments has several diesel locomotives. 
The actual image size of these locomotives depends on the distance from which 
they are imaged and shows considerable variability in the database. The vector 
correlation technique described in Section 3 cannot handle large scale changes, 
and the matching technique, therefore, needs to be extended to handle large 
scale changes. 

In Figure 2 image/1  is half the size of image Io (otherwise the two images 
are identical). Thus, 

-To (r) = 11 (st) (3) 

where r is any point in image Io and sr the corresponding point in /1  and the 
scale change s - 0.5. In particular consider two corresponding points Po and Pl 
and assume the image is Gaussian filtered at P0. Then it can be shown that [7], 

(4) 

In other words, the output of -To filtered with a Gaussian of scale a at P0 is 
equal to the output of/1 filtered with a Gaussian of scale sa i.e. the Gaussian has 
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to be stretched in the same manner as the image if the filter outputs are to be 
equal. This is not a surprising result if the output of a Gaussian filter is viewed 
as a Gaussian weighted average of the intensity. A more detailed derivation of 
this result is provided in [7]. 

The derivation above does not use an explicit value of the scale change s. 
Thus, equation 4 is valid for any scale change s. The form of equation 4 resembles 
a convolution and in fact it may be rewritten as a convolution 

Xo(~), a ( . , 4  = I~(sr) * a(. ,  s 4  (5) 

Similarly, filtering with the first and second derivatives of a Gaussian gives 
Is] 

/0 * G'(., ~) =/1  * G'(., sa) 

and, 
Io* G"( . ,4  = x : ,  G"(., so) 

where the normalized first derivative of a Gaussian is given by 

G' ( r ,  sa) = sa dG(r, sa ) /dr  

and the normalized second derivative of a Gaussian is given by 

G ' ( r ,  sc~) = (sa) 2 d2G(r, sa) /d (rr  T) 

(6) 

(7) 

(s) 

(9) 

Note that the first derivative of a Gaussian is a vector and the second deriva- 
tive of a Gaussian a 2 by 2 matrix. 

The above equations are sufficient to match the filter outputs (in what fol- 
lows assume only Gaussian filtering for simplicity) at corresponding points (for 
example at Po and p l ) .  A further complication is introduced if more than one 
point is to be matched while preserving the relative distances (structure) be- 
tween the points. Consider for example the pair of corresponding points Po, qo 
and Pl ,  q: .  The filter outputs at points Po, qo may be visualized as a template 
and the task is to match this template with the filter outputs at points Pl ,  ql .  
That  is, the template is correlated with the filtered version of the image/1 and 
a best match sought. However, since the distances between the points Pl ,  q :  are 
different from those between Po, qo the template cannot be matched correctly 
unless either the template is rescaled by a factor of 1/2 or the image/1 is rescaled 
by a factor of 2. The matching is, therefore, done by warping either the template 
or the image/1 appropriately. 

Thus, to find a match for a template from I0, in I: ,  the Gaussians must be 
filtered at the appropriate scale and then the image I1 or the template should 
be warped appropriately. Now consider the problem of localizing a template T, 
extracted from Io, in Ii(see Figure 2). For the purpose of subsequent analy- 
sis, assume two corresponding points (Po,qo) of interest in T and I:  (p: ,  q:)  
respectively. To localize the template the following three steps are performed. 

1. Use appropriate Relative Scale: Filter the template and I:  with Gaussians 
whose scale ratio is 2. That is, filter T with a Gaussian of scale 2a and I1 
with a. 
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2. Account for size change: Sub-sample T by half. At this point the spatial and 
intensity relationship between the warped version (filtered and sub-sampled) 
of template points P0 and q0 should be exactly same as the relationships 
between filtered versions of pl and ql. 

3. Translational Search: Perform a translational search over/1 to localize the 
template. 

This three step procedure can be easily extended to match VRs of T and/1  
using Equations 6 and 7. In step(l) generate VRs of T and I1 using the men- 
tioned filter scale ratios. In step(2) warp the VR of T instead of just the intensity. 
In step(3) use vector-correlation(Equation 2 at every step of the translational 
search. 

Without loss of generality any arbitrary template T can be localized in any 
/i  that  contains T scaled by a factor s. 

4.1 M a t c h i n g  Quer ies  o v e r - U n k n o w n  Scale 

The aforementioned steps for matching use the assumption that  the relative scale 
between a template and an image is known. However, the relative scale between 
structures in the database that  are similar to a query cannot be determined a 
priori. That  is, the query could occur in a database image at some unknown 
scale. A natural approach would be to search over a range of possible relative 
scales, the extent and step size being user controlled parameters. 

One way of accomplishing this is as follows. First, VRs are generated for each 
1 1 image in the database over a range of scales, say ~a,~--~a,...,4a. Then, a VR for 

the query is generated using Gaussian derivatives of scale a. The query VR is 
matched with each of the image VRs, thus traversing a relative scale change of 
�88 in steps of v~. For each scale pairing the three step procedure for matching 
VRs is applied. In the warping step of this procedure either the query or the 
image is warped depending on the relative scale. If the relative scale between 
the query and a candidate image is less than 1 the candidate VR is warped and 
if it is greater than 1 the query VR is warped. After the query is matched with 
each of the image VRs, the location in the image which has the best correlation 
score is returned. 

It is instructive to note that VR lists over scale are scale-space represen- 
tations in the sense described by Lindeberg [6]. By smoothing an image with 
Gaussians at several different scales Lindeberg generates a scale-space represen- 
tation. While VR lists are scale-space representations, however, they differ from 
Lindeberg's approach in two fundamental ways. First VRs are generated from 
derivatives of Ganssians and second, an assumption is made that  smoothing is 
accompanied by changes in size (i.e. the images are scaled versions rather than 
just smoothed versions of each other). This is the reason warping is required dur- 
ing VR matching across scales. VR lists are proper scale-space representations 
unlike pyramidal representations [6, 12] 

5 Constructing Query Images 

The query construction process begins with the user marking salient regions 
on an object. VRs generated at several scales within these regions are matched 
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with the database in accordance with the description in Section 4. Unselected 
regions are not used in matching. One way to think about this is to consider a 
composite template, such as one shown in Figure l(ii). The unselected regions 
have been masked out. The composite template preserves inter-region spatial 
relationships and hence, the structure oft the object is preserved. Warping the 
composite will warp all the components appropriately, preserving relative spatial 
relationships. That is, both the regions as well as distances between regions are 
scaled appropriately. Further, there are no constraints imposed on the selection 
of regions and the regions need not overlap. 

Careful design of a query is important. It is interesting to note that mark- 
ing the entire object does not work very well (see [12] for examples). Marking 
extremely small regions has also not worked with this database. There are too 
many coincidental structures that can lead to poor retrieval. 

Many of these problems are, however, simplified by having the user interact 
extensively with the system. Letting the user design queries eliminates the need 
for detecting the saliency of features on an object. Instead, saliency is specified 
by the user. In addition, based on the feedback provided by the results of a query, 
the user can quickly adapt and modify the query to improve performance. 

6 E x p e r i m e n t s  

The choice of images used in the experiments was based on a number of con- 
siderations. It is expected that when very dissimilar images are used the system 
should have little difficulty in ranking the images. For example, if a car query 
is used with a database containing cars and apes, then it is expected that cars 
would be ranked ahead of apes. This is borne out by the experiments done to 
date. Much poorer discrimination is expected if the images are much more 'sim- 
ilar'. For example, man-made vehicles like cars, diesel and steam locomotives 
should be harder to discriminate. It was, therefore, decided to test the system 
by primarily using images of cars, diesel and steam locomotives as part of the 
database. 

The database used in this paper has digitized images of cars, steam locomo- 
tives, diesel locomotives, apes and a small number of other miscellaneous objects 
such as houses. Over 300 images were obtained from the internet to construct 
this database. About 215 of these are of cars, diesel locomotives and steam lo- 
comotives. There are about 80 apes and about 12 houses in the database. These 
photographs, were taken with several different cameras of unknown parameters, 
and, under varying but uncontrolled lighting and viewing geometry. The objects 
of interest are embedded in natural scenes such as car shows, railroad stations, 
country-sides and so on. 

Prior to describing the experiments, it is important to clarify what a correct 
retrieval means. A retrieval system is expected to answer questions such as 'find 
all cars similar in view and shape to this car' or 'find all steam engines similar in 
appearance to this steam engine'. To that end one needs to evaluate if a query 
can be designed such that it captures the appearance of a generic steam engine 
or perhaps that of a generic car. Also, one needs to evaluate the performance 
of VR matching under a specified query. In the examples presented here the 
following method of evaluation is applied. First, the objective of the query is 
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stated and then retrieval instances are gauged against the stated objective. In 
general, objectives of the form 'extract images similar in appearance to the query' 
will be posed to the retrieval algorithm. 

Several different queries were constructed to retrieve objects of a particular 
type. It is observed that under reasonable queries at least 60% of m objects 
underlying the query are retrieved in the top m ranks. Best results indicate re- 
trieval results of up to 85%. This performance compares very well with typical 
text retrieval systems 2. To the best of our knowledge other image retrieval sys- 
tems either need prior segmentation or work on restricted domains. Therefore, 
accurate comparisons cannot be made. 

Several experiments were carried out with the database [12]. The results of 
the experiments carried out with a car query, a diesel query and a steam query 
are presented in table 6. The number of retrieved images in intervals of ten is 
charted in Table 6. The table shows, for example, that there are 16 car images 
"similar" in view to the car in the query and 14 of these are ranked in the 
top 20. For the steam query there are 12 "similar" images (as determined by a 
person), 9 of which are ranked in the top 20. Finally, for the diesel query there 
are 30 "similar" images, 12 of which are found in the top 20 retrievals. Due to 
space limitations only the results of the Car retrieval are displayed (Figure 3) 
and analyzed in detail (for the others see [12]). 

No. Retrieved Images 
Iqueryp-lOIll-20121-30131-401,41-50 ] 

Car 8 6 1 0 1 
Steam 7 2 1 0 2 
Diesel 7 5 5 6 4 

Table 1. Correct retrieval instances for the Car, Steam and Diesel queries in intervals 
of ten. The number of "similar" images in the database as determined by a human are 
16 for the Car query, 12 for the Steam query and 30 for the Diesel query. 

The car image used for retrieval is shown in the top left picture of Figure 3. 
The objective is to 'obtain all similar cars to this picture'. Towards this end a 
query was marked by the user, highlighting the wheels, side view-mirror and mid 
section. The results to be read in text book fashion in Figure 3 are the ranks of 
the retrieved images. The white patches indicate the centroid of the composite 
template at best match. In the database, there are exactly 16 cars within a close 
variation in view to the original picture. Fourteen of these cars were retrieved 
in the top 16, resulting in a 87.5% retrieval. All 16 car pictures were picked up 
in the top 50. The results also show variability in the shape of the retrieved 
instances. The mismatches observed in pictures labeled 'car05.tif' and 'car09.tif' 
occur in VR matching when the relative scale between the query VR and the 
images is �88 

2 The average retrieval rate for text-based systems is 50% 
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Fig .  3. Retrieval results for Car.  

Wrong instances of retrieval are of two types.  The  first is where the VR 
matching performs well but  the objective of the query is not  satisfied. In this case 
the query will have to be redesigned. The second reason for incorrect  retr ieval  
is mismatches  due to the search over scale space. Most  of the  VR mismatches  
result  from matching at the extreme relative scales. 

Overall  the queries designed were also able to dis t inguish s team engines and 
diesel engines from cars precisely because the regions selected are  most  s imilar ly 
found in similar  classes of objects. As was pointed out  in Section 5 query selection 
must  faithfully represent  the intended retrieval,  the  burden  of which is on the 
user. The retrieval system presented here performs well under  i t ' s  s ta ted  purpose:  
tha t  is to ex t rac t  objects  of similar shape and view to tha t  of a query. 

7 Conc lus ions  and Limitat ions  

This paper  demonst ra tes  retrieval of similar objec ts  using vector  representa t ions  
over scale-space. There  are several factors tha t  affect retr ieval  results,  including 
query selection, and the range of scale-space search. The  results  indicate  tha t  
this me thod  has sufficient accuracy for image retr ieval  appl icat ions.  
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One of the limitations of our current approach is the inability to handle 
large deformations. The filter theorems described in this paper hold under affine 
deformations and a current step is to incorporate it in to the vector-correlation 
routine. 

While these results execute in a reasonable time they are still far from the 
high speed performance desired of image retrieval systems. Work is on-going 
towards building indices of images based on local shape properties and using the 
indices to reduce the amount of translational search. 
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