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Abstract. This paper describes a new approach for tracking rigid and articulated 
objects using a view-based representation. The approach builds on and extends 
work on eigenspace representations, robust estimation techniques, and parameter- 
ized optical flow estimation. First, we note that the least-squares image reconstruc- 
tion of standard eigenspace techniques has a number of problelns and we reformu- 
late the reconstruction problem as one of robust estimation. Second we define a 
"subspace constancy assumption" that allows us to exploit techniques for pararn- 
eterized optical flow estimation to simultaneously solve for the view of an object 
and the affine transformation between the eigenspace and the image. To account 
for large affine transformations between the eigenspace and the image we define 
an EigenPyramid representation and a coarse-to-fine matching strategy. Finally, 
we use these techniques to track objects over long image sequences in which the 
objects simultaneously undergo both affine image motions and changes of view. 
In particular we use this "'EigenTracking" technique to track and recognize the 
gestures of a moving hand. 

1 Introduction 

View-based object representations have found a number of  expressions in the computer  
vision literature, in particular in the work on eigenspace representations [10, 13]. Eigen- 
space representations provide a compact  approximate encoding of  a large set of  training 
images in terms of  a small number of  orthogonal basis images. These basis images span 
a subspace of the training set called the eigenspace and a linear combination of  these 
images can be used to approximately reconstruct any of the training images. Previous 
work on eigenspace representations has focused on the problem of  object recognition 
and has only peripherally addressed the problem of  tracking objects over time. Addit ion-  
ally, these eigenspace reconstruction methods are not invariant to image transformations 
such as translation, scaling, and rotation. Previous approaches have typically assumed 
that the object of  interest can be located in the scene, segmented, and transformed into a 
canonical form for matching with the eigenspace. In this paper we will present a robust 
statistical framework for reconstruction using the eigenspace that will generalize and ex- 
tend the previous work in the area to ameliorate some of  these problems. The work com- 
bines lines of research from object recognition using eigenspaces,  parameterized optical 
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flow models, and robust estimation techniques into a novel method for tracking objects 
using a view-based representation. 

There are two primary observations underlying this work. First, standard eigenspace 
techniques rely on a least-squares fit between an image and the eigenspace [10] and this 
can lead to poor results when there is structured noise in the input image. We reformu- 
late the eigenspace matching problem as one of robust estimation and show how it over- 
comes the problems of the least-squares approach. Second, we observe that rather than 
try to represent all possible views of an object from all possible viewing positions, it is 
more practical to represent a smaller set of canonical views and allow a parameterized 
transformation (eg. affine) between an input image and the eigenspace. This allows a 
multiple-views plus transformation I12] model of object recognition. What this implies 
is that matching using an eigenspace representation involves both estimating the view as 
well as the transformation that takes this view into the image. We formulate this problem 
in a robust estimation framework and simultaneously solve for the view and the trans- 
formation. For a particular view of an object we define a subspace constancy assumption 
between the eigenspace and the image. This is analogous to the "brightness constancy 
assumption" used in optical flow estimation and it allows us to exploit parameterized 
optical flow techniques to recover the transformation between the eigenspace and the 
image. Recovering the view and transformation requires solving a non-linear optimiza- 
tion problem which we minimize using gradient descent with a continuation method. To 
account for large transformations between model and image we define an EigenPyramid 
representation and a coarse-to-fine matching scheme. This method enables the tracking 
of previously viewed objects undergoing general motion with respect to the camera. This 
approach, which we call EigenTracking, can be applied to both rigid and articulated ob- 
jects and can be used for object and gesture recognition in video sequences. 

2 Related Work 

While eigenspaces are one promising candidate for a view-based object representation, 
there are still a number of technical problems that need to be solved before these tech- 
niques can be widely applied. First, the object must be located in the image. It is either 
assumed that the object can be detected by a simple process [9, 10] or through global 
search [9, 13]. Second, the object must be segmented from the background so that the 
reconstruction and recognition is based on the object and not the appearance of the back- 
ground. Third, the input image must be be transformed (for example by translation, ro- 
tation, and scaling) into some canonical form for matching. The robust formulation and 
continuous optimization framework presented here provide a local search method that 
is robust to background variation and simultaneously matches the eigenspace and image 
while solving for translation, rotation, and scale. 

To recognize objects in novel views, traditional eigenspace methods build an eigen- 
space from a dense sampling of views [6, 7, 10]. The eigenspace coefficients of these 
views are used to define a surface in the space of coefficients which interpolates between 
views. The coefficients of novel views will hopefully lie on this surface. In our approach 
we represent views from only a few orientations and recognize objects in other orienta- 
tions by recovering a parameterized transformation (or warp) between the image and the 
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eigenspace. This is consistent with a model of  human object recognition that suggests 
that objects are represented by a set of  views corresponding to familiar orientations and 
that new views are transformed to one of these stored views for recognition [12]. 

To track objects over time, current approaches assume that simple motion detection 
and tracking approaches can be used to locate objects and then the eigenspace matching 
verifies the object identity [10, 13]. What these previous approaches have failed to ex- 
ploit is that the eigenspace itself provides a representation (i.e. an image) of  the object 
that can be used for tracking. We exploit our robust parameterized matching scheme to 
perform tracking of objects undergoing affine image distortions and changes of  view, 

This differs from traditional image-based motion and tracking techniques which typ- 
ically fail in situations in which the viewpoint of  the object changes over time. It also 
differs from tracking schemes using 3D models which work well for tracking simple 
rigid objects. The EigenTracking approach encodes the appearance of the object from 
multiple views rather than its smmture. 

Image-based tracking schemes that emphasize learning of views or motion have fo- 
cused on region contours [1, 5]. In particular. Baumberg and Hogg [1 ] track articulated 
objects by fitting a spline to the silhouette of  an object. They learn a view-based represen- 
tation of  people walking by computing an eigenspace representation of the knot points 
of  the spline over many training images. Our work differs in that we use the brightness 
values within an image region rather than the region outline and we allow parameterized 
transformations of  the input data in place of  the standard preprocessing normalization. 

3 Eigenspace Approaches 

Given a set of  images, eigenspace approaches construct a small set of  basis images that 
characterize the majority of the variation in the training set and can be used to approx- 
imate any of the training images. For each ,~, x ,m, image in a training set o f p  images 
we construct a 1D column vector by scanning the image in the standard lexicographic 
order. Each of these ID vectors becomes a column in a m~, x p matrix A. We assume 
that the number of  training images, p, is less than the number of  pixels, ~,,m and we use 
Singular Value Decomposition (SVD) 3 to decompose the matrix A as 

A = U ~ V  T. ( 1 ) 

/if is an orthogonal matrix of  the same size as A representing the principle component  
directions in the training set. Z is a diagonal matrix with singular values a l ,  ~r2 . . . . .  crp 
sorted in decreasing order along the diagonal. The t) • t) orthogonal matrix V r encodes 
the coefficients to be used in expanding each column of A in terms of the principle com- 
ponent directions. 

If  the singular values cry,, for/~: > t for some t, are small then, since the columns of 
U are orthonormal, we can approximate some new column e as 

t 

e~ : E ~:iUi" 
i = 1  

(2) 

3 Other approaches have been described in the literature (cf. [10]). 
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Fig. 1. Example that will be used to illustrate ideas throughout the paper. 

where the ci are scalar values that can be computed by taking the dot product of e and 
the column Ui. This amounts to a projection of the input image, e, onto the subspace 
defined by the t basis vectors. 

For illustration we constructed an eigenspace representation for soda cans. Figure 1 
(top row) shows some example soda can images in the training set which contained 200 
images of Coke and 7UP cans viewed from the side. The eigenspace was constructed as 
described above and the first few principle components are shown in the bottom row of 
Figure 1.4 For the experiments in the remainder of the paper, 50 principle components 
were used for reconstruction. While fewer components could be used for recognition, 
EigenTracking will require a more accurate reconstruction. 

4 Robust Matching 

The approximation of an image region by a linear combination of basis vectors can be 
thought of as "matching" between the eigenspace and the image. This section describes 
how this matching process can be made robust. 

Let e be an input image region, written as a n m  x 1 vector, that we wish to match to 
the eigenspace. For the standard approximation e* ofe in Equation (2), the coefficients c i 
are computed by taking the dot product ofe with the Ui. This approximation corresponds 
to the least-squares estimate of the c~ [10]. In other words, the ci are those that give a 
reconstructed image that minimizes the squared error E(c) between e and e* summed 

4 In this example we did not subtract the mean image from the training images before computing 
the eigenspace. The mean image con'esponds to the first principle component resulting in one 
extra eigenimage. 
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Fig. 2. A simple example. (a, b): Training images. (c, d): Eigenspace basis images. 

Fig. 3. Reconstruction. (a): New test image. (b): Least-squares reconstruction. (c): Ro- 
bust reconstruction. (d): Outliers (shown as black pixels). 

over the entire image: 

./=1 j = l  i=1 

(3) 

This least-squares approximation works well when the input images have clearly seg- 
mented objects that look roughly like those used to build the eigenspace. But it is com- 
monly known that least-squares is sensitive to gross errors, or "outliers" [8], and it is 
easy to construct situations in which the standard eigenspace reconstruction is a poor ap- 
proximation to the input data. In particular, if the input image contains stn~ctured noise 
(eg. from the background) that can be represented by the eigenspace then there may be 
multiple possible matches between the image and the eigenspace and the least-squares 
solution will return some combination of these views. 

For example consider the very simple training set in Figure 2 (a and b). The basis 
vectors in the eigenspace are shown in Figure 2 (c, d). 5 Now, consider the test image 
in Figure 3a which does not look the same as either of the training images. The least- 
squares reconstruction shown in Figure 3b attempts to account for all the data but this 
cannot be done using a linear combination of the basis images. The robust formulation 
described below recovers the dominant feature which is the vertical bar (Figure 3c) and 
to do so, treats the data to the right as outliers (black region in Figure 3d). 

We subtracted the mean from each of Figure 2 a and b and included the constant image in the 
expansion basis. 
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Fig. 4. Robust error norm (p) and its derivative (~/,). 

To robustly estimate the coefficients c we replace the quadratic error norm in Equa- 
tion (3) with a robust error norm, p, and minimize 

E ( c ) =  ~.= p e j -  \~ ;= l c iU i ' J :  , o -  . (4) 

where cr is a scale parameter. For the experiments in this paper we take p to be 

~t: 2 0 2zcr 2 
p(z ,  ~,) - , ~ - - +  ~,2" ~ .P (~ ' ,  ~) = '~/'(:"' ~) - (a2 +..:,.2)2" (5) 

which is a robust error norm that has been used extensively for optical flow estima- 
tion [3, 4]. The shape of the function, as shown in Figure 4, is such that it "rejects", 
or downweights, large residual errors. The function @(,~, or), also shown in Figure 4, is 
the derivative o f p  and characterizes the influence of  the residuals. As the magnitudes of  
residuals (ej - e~ ) grow beyond a point their influence on the solution begins to decrease 
and the value of p(.) approaches a constant. 

The value ~ is a scale parameter that affects the point at which the influence of  out- 
liers begins to decrease. By examining the ,C-function we see that this "outlier rejection" 
begins where the second derivative o fp  is zero. For the error norm used here, this means 
that those residuals where I(ej - e.~)[ > c~/,75 can be viewed as outliers. 

The computation of the coefficients c involves the minimization of  the non-linear 
function in Equation (4). We perform this minimization using a simple gradient descent 
scheme with a continuation method that begins with a high value for c~ and lowers it 
during the minimization (see [2, 3, 4] for details). The effect of this procedure is that 
initially no data are rejected as outliers then gradually the influence of  outliers is reduced. 
In our experiments we have observed that the robust estimates can tolerate roughly 35 - 
45% of the data being outliers. 

4.1 Outliers and Multiple Matches 

As we saw in Figure 3 it is possible for an input image to contain a brightness pattern 
that is not well represented by any single "view". Given a robust match that recovers the 
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Fig. 5. Robust matching with structured noise. 

"dominant" structure in the input image, we can detect those points that were treated as 
outliers, We define an outlier vector, or "'mask", m as 

0 I(ej - e i)[ _< cy/v/3 
,mj = 1 otherwise. 

If  a robust match results in a significant number of  outliers, then additional matches 
can be found by minimizing 

E{c) = ~ _ ~  "m,:i / )  e. ,  i - c y : , i  . cr . (6) 
j - - I  / : 1  

4.2 Robust Matching Examples 

An example will help illustrate the problems with the least-squares solution and the ef- 
fect of robust estimation. Figure 5 shows an artificial image constructed from two images 
that were present in the training data (the image is 2 /3  Coke can and 1/3 7UP can). It is 
impossible to reconstruct the entire input image accurately with the eigenspace despite 
the fact that both parts of  the image can be represented independently. The least-squares 
solution recovers a single view that contains elements of  both possible views. The ro- 
bust estimation of  the linear coefficients results in a much more accurate reconstruction 
of  the dominant view (Figure 5, Robust 1 ). Moreover, we can detect those points in the 
image that did not match the reconstruction very well and were treated as outliers (black 
points in Figure 5, Outliers 1) Equation (6) can be used to recover the view correspond- 
ing to the outliers (Figure 5, Robust 2) and even with very little data, the reconstructed 
image reasonably approximates the view of  the 7UP can. 

5 EigenSpaces and Parametric Transformations 

The previous section showed how robust estimation can improve the reconstruction of 
an image that is already aligned with the eigenspace. In this section we consider how to 
achieve this alignment in the first place. It is impractical to represent all possible views 
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of an object at all possible scales and all orientations. One must be able to recognize a 
familiar object in a previously unseen pose and hence we would like to represent a small 
set of views and recover a transformation that maps an image into the eigenspace. In the 
previous section we formulated the matching problem as an explicit non-linear param- 
eter estimation problem. In this section we will simply extend this problem formulation 
with the addition of a few more parameters representing the transformation between the 
image and the eigenspace. 

To extend eigenspace methods to allow matching under some parametric transfor- 
marion we to formalize a notion of"brightness constancy" between the eigenspace and 
the image. This is a generalization of the notion of brightness constancy used in optical 
flow which states that the brightness of a pixel remains constant between frames but that 
its location may change. For eigenspaces we wish to say that there is a view of the object, 
as represented by some linear combination of the basis vectors, ~Zi, such that pixels in 
the reconstruction are the same brightness as pixels in the image given the appropriate 
transformation. We call this the subspace  cons tancy  assumption.  

Le t  U = [U1, U2 . . . .  U~], e = [cl, c2 . . . .  c,] 7", and 

= ~ czU.z, (7) Uc 
i = 2  

where Ue is the approximated image for a particular set of coefficients, e. While Ue is a 
n m •  1 vector we can index into it as though it were an 'n, • m image. We define (Ue)(x) 
to be the value of Uc at the position associated with pixel location x = (x, y). 

Then the robust matching problem from the previous section can be written as 

E(e) = ~ p(I(x) - (Ue)(x), ~), (8) 
X 

where I is an n • m sub-image of some larger image. Penfland et al. [11] call the resid- 
ual error I - Ue the distance-from-feature-space (DFFS) and note that this error could 
be used for localization and detection by performing a global search in an image for the 
best matching sub-image. Moghaddam and Pentland extend this to search over scale by 
constructing multiple input images at various scales and searching over all of them si- 
multaneously [9]. We take a different approach in the spirit of parameterized optical flow 
estimation. First we define the subspace constancy assumption by parameterizing the in- 
put image as follows 

I (x  + u(x,a))  = (Ue)(x), Vx, (9) 

where u(x, a) = (u(x, a), v (x, a) ) represents an image transformation (or motion), u 
and v represent the horizontal and vertical displacements at a pixel, and the parameters 
a are to be estimated. For example we may take u to be the affine transformation 

u(x,a)  = ao + a l x  + o,2y 

v(x,a) = a 3  + a4 x 4- a s y  

where .T and y are defined with respect to the image center. Equation (9) states that there 
should be some transformation, u(x, a), that, when applied to image region I ,  makes I 
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look like some image reconstn~cted using the eigenspace. This transformation can be 
thought of as warping the input image into the coordinate frame of the training data. 

Our goal is then to simultaneously find the c and a that minimize 

E(e, a) = Z p(r (x  + uCx, a)) - (Uc)(x), or). (10) 
x 

As opposed to the exhaustive search techniques used by prewous approaches [9, 13], we 
derive and solve a continuous optimization problem, 

First we rewrite the left hand side of Equation (9) using a first order Taylor series 
expansion 

ICx) + L,:(x)u(x,a) + [, ,(x)v(x,a) : (Uc)(x) 

where I~ and I:~/are partial derivatives of the image in the ~ and ~ directions respectively. 
Reorganizing terms gives 

I:,~(x).,.(x,a) + I:,,(x)v(x, a ) +  (I(x) - (Uc)(x)) = O. (11) 

This is very similar to the standard optical flow constraint equation where the Uc has 
replaced [ (x .  t - 1) and ( [ -  Uc) takes the place of the "temporal derivative". 

To recover the coefficients of the reconstruction as well as the transformation we 
combine the constraints over the entire image region and minimize 

E(c. a) = ~-~ p(I~:(x),,(x, a) + I:~(xh,(x, a) + (I(x) - (Uc)(x)),cr) (12) 
x 

with respect to c and a. As in the previous section, this minimization is performed us- 
ing a simple gradient descent scheme with a continuation method that gradually lowers 
or. As better estimates of a are available, the input image is warped by the transforma- 
tion u(x, a) and this warped image is used in the optimization. As this warping registers 
the image and the eigenspace, the approximation Uc gets better and better. This mini- 
mization and warping continues until convergence. The entire non-linear optimization 
scheme is described in greater detail in [2]. 

Note that this optimization scheme will not perform a global search to "find" the im- 
age region that matches the stored representation. Rather, given an initial guess, it will re- 
fine the pose and reconstruction. While the initial guess can be fairly coarse as described 
below, the approach described here does not obviate the need for global search tech- 
niques but rather compliments them. In particular, the method will be useful for tracking 
an object where a reasonable initial guess is typically available. 

EigenPyramids. As in the case of optical flow, the constraint equation ( 11 ) is only valid 
for small transformations. The recovery of transformations that result in large pixel dif- 
ferences necessitates a coarse-to-fine strategy. For every image in the training set we 
construct a pyramid of images by spatial filtering and sub-sampling (Figure 6). The im- 
ages at each level in the pyramid form distinct training sets and at each level SVD is 
used to construct an eigenspace description of that level. 

The input image is similarly smoothed and subsampled. The coarse-level input im- 
age is then matched against the coarse-level eigenspace and the values of c and a are 
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Fig. 6. Example of EigenPyramids. a: Sample images from the training set. b: First few 
principle components in the EigenPyramid. 

estimated at this level. The new values of a are then projected to the next level (in the 
case of the affine transformation the values of a0 and a,3 are multiplied by 2). This a is 
then used to warp the input image towards the eigenspace and the value ofc  is estimated 
and the a,z are refined. The process continues to the finest level. 

6 EigenTracking 

The robust parameterized matching scheme described in the previous section can be 
used to track objects undergoing changes in viewpoint or changes in structure. As an 
object moves and the view of the object changes, we recover both the current view of 
the object and the transformation between the current view and the image. It is important 
to note that no "image motion" is being used to "track" the objects in this section. The 
tracking is achieved entirely by the parameterized matching between the eigenspace and 
the image. We call this EigenTracking to emphasize that a view-based representation is 
being used to track an object over time. 

For the experiments here a three-level pyramid was used and the value of~r started at 
65 ~ and was lowered to a minimum of 15 ~ by a factor of 0.85 at each of 15 stages. 
The values of c and a were updated using 15 iterations of the descent scheme at each 
stage, and each pyramid level. The minimization was terminated if a convergence cri- 
terion was met. The algorithm was given a rough initial guess of the transformation 
between the first image and the eigenspace. From then on the algorithm automatically 
tracked the object by estimating e and a for each frame. No prediction scheme was used 
and the motion ranged from 0 to about 4 pixels per frame. For these experiments we 
restricted the transformation to translation, rotation, and scale. 

6.1 Pickup Sequence 

First we consider a simple example in which a hand picks up a soda can. The can under- 
goes translation and rotation in the image plane (Figure 7). The region corresponding to 
the eigenspace is displayed as white box in the image. This box is generated by project- 
ing the region corresponding to the eigenspace onto the image using the inverse of the 
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Fig. 7. Pickup Sequence. EigenTracking with translatk~n and rotation in the image plane. 
livery 20 frames in the 75 frame sequence are shown. 

estimated transformation between the image and the eigenspace, This proiection serves 
to illustrate the accuracy of the recovered translbrmation. Beside each image is shown 
the robust reconstruction of the image region within the box. 

6.2 Tracking a Rotating Object 

Figure 8 shows the tracking of a soda can that translates left and right while moving in 
depth over 200 frames. While the can is changing position relative to the camera it is 
also undergoing rotations about its major axis. What this means is that the traditional 
brightness constancy assumption of optical flow will not track the "can" but rather the 
"texture" on the can. The subspace constancy assumption, on the other hand, means that 
we will recover the transformation between our eigenspace representation of the can and 
the image. Hence, it is the "can" that is tracked rather than "texture". 

More details are provided to the right of the images. On the left of each box is the 
"stabilized" image which shows bow the original image is "warped" into the coordinate 
frame of the eigenspace. Notice that the background differs over time as does the view 
of the can, but that the can itself is in the same position and at the same scale. The mid- 
dle image in each box is the robust reconstruction of the image region being tracked. 
On the fight of each box (in black) are the "outliers" where the observed image and the 
reconstnlction differed by more than o-/x/3. 

6.3 Articulated Motion and Gesture Recognition 

A final example considers the problem of recognizing hand gestures in video sequences 
in which the hand is moving. We define a simple set of four hand gestures illustrated in 
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Fig. 8. EigenTracking with translation and divergence over 200 frames. The soda can 
rotates about its major axis while moving relative to the camera. 

Figure 9. A 100 image training set was collected by fixing the wrist position and record- 
ing a hand alternating between these four gestures. The eigenspace was constructed and 
25 basis vectors were used for reconstruction. In our preliminary experiments we have 
found brightness images to provide sufficient information for both recognition and track- 
ing of hand gestures (cf. [9]). 

Figure 10 shows the tracking algorithm applied to a 100 image test sequence in which 
a moving hand executed the four gestures. The motion in this sequence was large (as 
much as 15 pixels per frame) and the hand moved while changing gestures. The figure 
shows the backprojected box corresponding to the eigenspace model and, to the right, 
on top, the reconstructed image. Below the reconstructed image is the "closest" image 
in the original training set (taken to be the smallest Euclidean distance in the space of 
coefficients). While more work must be done, this example illustrates how eigenspace 
approaches might provide a view-based representation of articulated objects. By allow- 
ing parameterized transformations we can use this representation to track and recognize 
human gestures. 



341 

Fig, 9. Examples of the four hand gestures used to construct the eigenspace. 

7 Conclusions 

This paper has described robust eigenspace matching, the recovery of  parameterized 
transformations between an image region and an eigenspace representation, and the ap- 
plication of  these ideas to EigenTracking and gesture recognition. These ideas extend 
the useful applications ofeigenspace approaches and provide a new form of  tracking for 
previously viewed objects. In particular, the robust formulation of  the subspace match- 
ing problem extends eigenspace methods to situations involving occlusion, background 
clutter, noise, etc. Currently these problems pose serious limitations to the usefulness of  
the eigenspace approach. Furthermore, the recovery of  parameterized transformations 
in a continuous optimization framework provides an implementation of  a views+trans- 
.fi~rmation model for object recognition. In this model a small number of views are rep- 
resented and the transformation between the image and the nearest view is recovered. 
Finally, the experiments in the paper have demonstrated how a view-based represen- 
tation can be used to track objects, such as human hands, undergoing both changes in 
viewpoint and and changes in pose. 
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