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Abs t rac t .  This paper examines the fundamental ambiguities and un- 
certainties inherent in recovering structure from motion. By examining 
the eigenvectors associated with null or small eigenvalues of the Hessian 
matrix, we can quantify the exact nature of these ambiguities and pre- 
dict how they will affect the accuracy of the reconstructed shape. Our 
results for orthographic cameras show that the bas-relief ambiguity is 
significant even with many images, unless a large amount of rotation 
is present. Similar results for perspective cameras suggest that three or 
more frames and a large amount of rotation are required for metrically 
accurate reconstruction. 

1 I n t r o d u c t i o n  

Structure from motion is one of the classic problems in computer  vision and 
has received a great deal of at tention over the last decade. It  has wide-ranging 
applications, including robot vehicle guidance and obstacle avoidance, and the 
reconstruction of 3-D models from imagery. Unfortunately, the quality of results 
available using this approach is still often very disappointing. More precisely, 
while the qualitative estimates of structure and motion look reasonable, the 
actual quanti tat ive (metric) estimates can be significantly distorted. 

Much progress has been made recently in identifying the sources of errors and 
instabilities in the structure from motion process. It  is now widely understood 
that  the arbi trary algebraic manipulat ion of the imaging equations to derive 
closed-form solutions (e.g., [1]) can lead to algorithms that  are numerically ill- 
conditioned or unstable in the presence of measurement  errors. To overcome 
this, statistically optimal algorithms for estimating structure and motion have 
been developed [2, 3, 4]. It  is also understood that  using more feature points and 
images results in bet ter  estimates, and that  certain configurations of points (at 
least in the two frame case) are pathological and cannot be reconstructed. 

An example of an algorithm which generates very good results is the factor- 
ization approach of Tomasi and Kanade [5]. This algorithm assumes or thography 
and is implemented using an object-centered representation and singular value 
decomposition. It  uses many points and frames, and for most sequences, a large 
amount  of object rotation (usually 360~ However, when only a small range of 
viewpoints is present (e.g., the "House" sequence in [5], Fig. 7), the reconstruc- 
tion no longer appears  metric (the house walls are not perpendicular).  
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In this paper, we demonstrate that  it is precisely this last factor, i.e., the 
overall rotation of the object, or equivalently, the variation in viewpoints, which 
critically determines the quality of the reconstruction. The ambiguity in object 
shape due to small viewpoint variation often looks like it might be a projective 
deformation of the Euclidean shape, which is interesting--several researchers 
have argued recently in favor of trying to recover only this projective structure 
[6, 7, 8]. In fact, we show that  the major ambiguity in the reconstruction is a 
simple depth scale uncertainty, i.e., the classic bas-relie/ambiguity which exists 
for two-frame structure from motion under orthographic projection [9]. 

To derive our results, we use eigenvalue analysis of the covariance matrix 
for the structure and motion estimates. Our results are significant for two tea- 
sons. First, we show how to theoretically derive the expected ambiguity in a 
reconstruction, and also derive some intuitive guidelines for selecting imaging 
situations which can be expected to produce reasonable results. Second, since 
the primary ambiguities are very well characterized by a small number of modes, 
this information can be used to construct better on-line (recursive) estimation 
algorithms. 

Our paper is structured as follows. After reviewing previous work, we present 
our formulation of the structure from motion problem and develop our technique 
for analyzing ambiguities using eigenvector analysis of the information (Hessian) 
matrix. We then present the results of our analysis for two different camera 
models: 1-D orthographic cameras and 2-D perspective cameras (more examples 
and results are presented in [10]). We conclude with a discussion of the main 
sources of errors and ambiguities, and directions for possible future work. 

2 P r e v i o u s  w o r k  

Structure from motion has been extensively studied in computer vision. Early 
papers on this subject develop algorithms to compute the structure and motion 
from a small set of points matched in two frames using an essential parameter 
approach [1]. The performance of this approach can be significantly improved 
using non-linear least squares (optimal estimation) techniques [2, 3]. More recent 
research focuses on extraction of shape and motion from longer image sequences 
using both batch and recursive (Kalman filter) formulations [4, 5, 11, 12, 13]. 
Another line of research has addressed recovering affine [14] or projective [6, 7, 8] 
structure estimates. For a more detailed review of related work, please see [4, 10]. 

The nature of structure and motion errors, which is the main focus of this 
paper, has also previously been studied. Weng et al. perform some of the ear- 
liest and most detailed error analyses of the two-frarne essential parameter ap- 
proach [3]. Adiv [15] and Young and Chellappa [16] analyze continuous-time (op- 
tical flow) based algorithms using the concept of the Cramer-Rao lower bound. 
Oliensis and Thomas [17] show how modeling the motion error can significantly 
improve the performance of recursive algorithms. 

In this paper, we extend these previous results using an eigenvalue analysis of 
the covariance matrix. This analysis can pinpoint the exact nature of structure 
from motion ambiguities and the largest sources of reconstruction error. We also 
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focus on multi-frame optimal structure from motion algorithms, which have not 
been studied in great detail. 

3 P r o b l e m  f o r m u l a t i o n  a n d  u n c e r t a i n t y  a n a l y s i s  

The equation which projects the i th 3-D point Pi (given t ime-varying motion 
parameters  m j )  into the j t h  frame at location uij is 

uij = 7) (r(p~, mj)) .  (1) 

The perspective projection 7 9 (defined below) is applied to a rigid t ransformation 

T(pi, m j )  = RjPi  + tj ,  (2) 

where R j  is a rotation matr ix  and t j  is a translation applied after the rotation. 
A variety of alternative representations are possible for the rotation matr ix  [18]. 
In this paper, we represent the rotation matr ix  as a function of a quaternion, 
since this representation has no singularities. 

The standard perspective projection equation used in computer  vision is 

where f is a product of the focal length of the camera and the pixel scale factor 
(assuming that  pixels are square). An alternative object-centered formulation, 
which we introduced in [4] is 

==- i s  ~_~_l. \ 1+77z / 

(4) 

Here, we assume that  the (x, y, z) coordinates before projection are with respect 
to a reference frame Hj that  has been displaced away from the camera by a 
distance tz along the optical axis, with s = f / t~  and r~ = 1/tz (Fig. 1). The 
projection parameter  s can be interpreted as a scale factor and 71 as a perspective 
distortion factor. Our alternative perspective formulation allows us to model 
both orthographic and perspective cameras using the same model. 

In our previous work, we used the iterative Levenberg-Marquardt  algorithm 
to estimate {pi, m j  } from {uij }, since it provides a statistically optimal solution 
[2, 3, 4, 12]. Tile Levenberg-Marquardt  method is a s tandard non-linear least 
squares technique [19] which minimizes 

C(a) = ~ ~ cij ]fiij - fij (a)l 2 , (5) 
i j 

where llij is the observed image measurement,  fij (a) = u(pi ,  m j )  is given in (1), 
and a contains the 3-D points pi,  the motion parameters  mj ,  and any additional 
unknown calibration parameters.  The weight cij in (5) describes the confidence 
in measurement uij. 
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Fig. 1. Sample configuration of cameras (mj), 3-D points (pi), image planes(Hi), and 
screen locations (u/j) 

3.1 Uncertainty analysis 

Regardless of the solution technique, the uncertainty in the recovered parameters--  
assuming that  image measurements are corrupted by small Gaussian noise errors--  
can be determined by computing the inverse covariance or information matrix 
A. This matrix is formed by computing outer products of the Jacobians of the 
measurement equations 

_ 0f~ 0f~j 
A = ~ ~ ~,~ ~ OaT (6) 

i j 

For notational succinctness, we use the symbol 

[ of~. ] 
0 i 

L om~ j 

to denote the non-zero portion of the full Jacobian oa �9 
The A matrix has the structure 

�9 = [ *p Igpm]  
L@ml Am ' ( 7 )  

The matrices Ap  and A m  are block diagonal, with diagonal entries 

Ap{ = E OfiT c3fij Of T c3fij 
c3pi Op T and A m j  = E Omj O m f '  (8) 

j i 

respectively (assuming cij = 1), while A p m  is dense, with entries 

Ofi T C3fij 
Ap~mj -- cOpi cOm~' (9) 

The information matrix has previously been used in the context of structure 
from motion to determine Cramer-Rao lower bounds on the parameter uncer- 
tainties by taking the inverse of the diagonal entries [15, 16]. The Cramer-Rao 
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bounds, however, can be arbitrarily weak, especially when A is singular or near- 
singular. In this paper,  we use eigenvector analysis of A to find the dominant  
directions in the uncertainty (eovariance) matr ix  and their magnitudes,  which 
gives us more insight into the exact nature  of structure from motion ambiguities. 

3.2 E s t i m a t i n g  r e c o n s t r u c t i o n  e r r o r s  

An impor tant  benefit of uncertainty analysis is tha t  we can easily quantify the 
expected amount  of reconstruction (and motion) error for an optimal  s tructure 
fl'om motion algorithm. In the case of RMS reconstruction error, the positional 
uncertainty matr ix  Cp~ can be computed by inverting A and looking at its upper  
left block (the block corresponding to the Pi variables). 1 The RMS reconstruc- 
tion and motion error can also be computed directly by summing the inverse 
eigenvalues of the information A. 

Wha t  is the advantage of the second approach,  if computing eigenvalues is 
just as expensive as inverting matrices? First, we can compute the first few eigen- 
values more cheaply (and in less space) than the matr ix  inverse, and these tend 
to dominate the overall reconstruction error. Second, it justifies the approach in 
the paper,  which is to look at the minimum eigenvalue as the prime indicator of 
reconstruction error. 

3.3 A m b i g u i t i e s  in s t r u c t u r e  f r o m  m o t i o n  

Because structure front motion a t tempts  to recover both the structure of the 
world and the camera motion without any external (prior) knowledge, it is sub- 
ject to certain ambiguities. The most f lmdamental  (but most innocuous) of these 
is tile coordinate frame (also known as pose, or Euclidean) ambiguity, i.e., we 
can move the origin of the coordinate system to an arbi t rary place and pose and 
still obtain an equally valid solution. 

The next most common ambiguity is the scale ambiguity (for a perspective 
camera) or the depth ambiguity (for an orthographic camera). This ambiguity 
(:an be removed with a small amount of additional knowledge, e.g., the absolute 
distance between camera positions. 

A third ambiguity, and the one we focus on in this paper,  is the bas-relief 
ambiguity. In its pure form, this ambiguity occurs for a two frame problem 
with an orthographic camera, and is a confusion between the relative depth of 
the object and the amount  of object rotation. In this paper,  we focus on the 
weak form of this ambiguity, i.e., the very large bas-relief uncertainty which 
occurs with imperfect measurements even when we use more than two frames 
and/or  perspective cameras. A central result of this paper  is tha t  the bas-relief 
ambiguity captures the largest uncertainties arising in structure from motion. 
However, when examined in detail, it appears  tha t  a larger class of deformations 
(i.e., projective) more fully characterizes the errors which occur in s tructure from 
motion. 

To characterize these ambiguities, we will use eigenvector analysis of the 
information matrix,  as explained in Section 3.1. Absolute ambiguities will show 

1 Note that this is not the same as simply inverting Ap.  
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up as zero eigenvalues (unless we add additional constraints or knowledge to 
remove them), whereas weak ambiguities will show up as small eigenvalues. 

4 O r t h o g r a p h y :  s i n g l e  s c a n l i n e  

Let us begin our analysis with an orthographic scanline camera, where the un- 
knowns are the 2-D point positions Pi = (xi, zi) and the rotation angles Oj. 2 The 
imaging equations are 

ulj = cjxi - sjzi (10) 

with cj = cos Oj and sj = sin 0j. 
The Jacobian for the 1-D orthographic camera is 

[ Ouij Ou}.~. ~ I r 
H i j =  ox~ o~, o0, j = [ ~ J - * J l - ( c J z ~ + * , x ~ ) ]  ~, (11) 

and the entries in the information matrix are 

A p ~ =  [ y]jc2 - ~ i c j s j ]  [ 
- E~ ~J~J Ej  d J = 

[--C2Zi -- C jS jX  i 

= L cjsjzi + ,~x~ ] ' Ap~mj 

c so]  (12) 

(la) 

A m j = [ E i ( c ~ z i + s j x i ) 2 ] = [ c 2 Z + 2 c y s j W + s ~ X ] ,  (14) 

with C = E j  c2, D = E j  cjsj ,  S = E j  82' Z ~- E i  Z2' W : E i  ZiXi' and 

x = E i  z~. 
Before analyzing the complete information matrix, let us look at the two 

subblocks Ap  and A m .  If we know the motion, the structure uncertainty is 
2 C--1 determined by Ap,  and is simply the triangulation error, i.e., a x c< and 

2 S -1 (note that  for small rotations, a~ 2 is generally much smaller than (7 z (2( 
az2). If we know the structure, the motion accuracy is determined by A m j  and 
is inversely proportional to the variance in depth along the viewing direction 
(,j, c,). 

What about ambiguities in the solution? Under orthography, the traditional 
scale ambiguity does not exist. However, translations along the optical axis can- 
not be estimated, and an overall pose (coordinate frame) ambiguity still exists. 
This manifests itself as the null (zero eigenvalue) eigenvector 

e0 = [Zo - - xo  " "  ZN - -XNI1  " "  1] T .  

4.1 T w o  f rames :  t h e  ba s - r e l i e f  a m b i g u i t y  

Let us say we only have two frames, and we have fixed 00 = 0, Co = 1, so = 
0,01 = 0, cl -- c,,1 = s (Fig. 2). Then 

[ cl [ 1 + c 2 -c2zi  - csxi] 
Ap, - c s  s2 , A p ~ m =  cszi + s2xi j ' A m =  [c2Z + 2csW + s2X] . 

(is) 

2 We do not estimate the horizontal translation since it can be determined from the 
motion of the centroid of the image points [5]. 
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(b) antisymmetric cameras 

Fig.  2. Orthographic projection, two frames. 

The solid lines indicate the viewing rays, while the thin lines indicate the optical axes 
and image planes. The diagonal dashed lines are the displaced viewing rays, while the 
ellipses indicate the positional uncertainty in the reconstruction due to uncertainty in 
motion (indicated as 50). 

The bas-relief ambigui ty  manifests itself as a null eigenvector 

e 0 =  [0 c z 0 + s x o  0 . . .  CZN+SXNI- - s ]  ~ .  

as can be verified by inspection. This is as we expected,  i.e., the p r imary  un- 
cer ta inty in the s t ructure  is entirely in the depth (z) direction, and is a scale 
uncer ta inty  (proport ional  to z). Note however tha t  this uncer ta in ty  is propor-  
t ional to cz + sx ra ther  than  z, as can be seen by inspecting Fig. 2a. 

An al ternative parameter iza t ion  of the two-frame problem is to set 00 = -01 
(Fig. 2b), in which case the null eigenvector is 

eo : [S~Xo -c2z i  . "  S2XN --(:2ZN [ CS] T.  (16) 

It shows tha t  the pr imary  effect of the bas-relief ambigui ty  is a "squashing" of 
the z values for a small increase in motion,  with a much smaller "bulging" in 
the x values. 3 This squashing and bulging is an affine deformat ion of the t rue 
structure.  

4 .2 M o r e  t h a n  t w o  f r a m e s ,  e q u i - a n g u l a r  m o t i o n  c o n s t r a i n t  

To simplify the analysis, we assume for the momen t  tha t  we know we have an 
equi-angular  image sequence, i.e., tha t  the ro ta t ion  angles are given by Oj = jAO,  
j E { - J , . , . ,  J} ,  J = f-~-,  where F is the total  number  of frames (imagine 

Note that the total interframe rotation is now 20. 
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Fig. 2b with more cameras). In this case, we have 

H T = Icy - s j i - j ( c j z i  + s jx i ) ]  

Ap{ : [~-~c~Os~] : [C 0 0 ] ,  

A p ~ m  :[ E j j c j s j z  i j-- Ez i  ' 

(17) 

(is) 

(19) 

(20) 

O~X0 ] 

[  p, pm 
1 

= A  

which reduces to the following three equations: 

I OgX0 ] 

--~'Zo [ ' 

a C  - E = aA 

~s - E = ~ 

(s' - ~E)X + (C' - ~E)Z = ~. 

Substituting a = E and fl = ~_~ into the third equation, we obSain a cubic 
in A, 

( S - A ) ( S ' ( C - A ) - E 2 ) X + ( C - I ) ( C ' ( S - I ) - E 2 ) Z - ( S - I ) ( C - t ) A  = 0, (22) 

which can be solved analytically using a package such as Mathematica~ [20]. 
Assuming tha t  the smallest eigenvalue is very small, we can use the approx- 

imation c~ ~ E to obtain a quadratic in A, 

( s  - ~ ) ( s ' c  - E ~ ) x  + c ( c ' ( s  - ~)  - E ~ ) Z  - ( S  - ~ ) C ~  = O. (23) 

Furthermore, using the small angle approximations,  C ~ ~-~j 1 - Jo, S ~ AO2 J2, 

E ~ AOJ2, C' ~ J2, and S'  ,~ AO2J4, where J2 = ~ j j 2  and J4 = ~ j j 4 ,  we 
obtain after some manipulation 

AO4 X J2( J~ - J~) (24) 
)~min ~ JoJ2Z + AO2[X(JoJ4 - -  J~) + JoJ2]" 

Notice that  the minimum eigenvalue is related to the fourth power of A0, 
i.e., doubling the inter-frame rotat ion reduces the RMS error by a factor of 4 

A m  = [Eyj%~Z + E~j2s~X] = [ C ' Z  + S ' X ]  , 

with E v-~ �9 ,-,! v-~ .2 2 ~ !  x-~ .282 = ?__.,j3cjsj, w = L j 3  cj, ~ = L j 3  j ,  and C , D , S , Z , W , X  defined 
as in (13-14). In this case, the smallest eigenvalue eigenvector has the form 

e 0 =  [ax0 - f lZo " "  aXN --/3ZN [1]  T (21) 

This will be an eigenvector if we can satisfy the matr ix  equation A e  = Ae, i.e., 



717 

-~min F = 2  F = 3  F = 4  F = 5  F = 6  F = 7  F = 8  
0tot = 11.5 ~ 
0tot ---: 22.9 ~ 
0tot ---- 34.4 ~ 
0tot = 45 ~ 
0tot -~ 60 ~ 
0tot ~--- 90 ~ 

0.000000 0.000067 0.000079 0.000088 0.000096 0.000104 0.000112 
0.000000 0.001087 0.001283 0.001418 0.001547 0.001677 0.001810 
0.000000 0.005618 0.006597 0.007277 0.007931 0.008594 0.009269 
0.000000 0.016854 0.019688 0.021673 0.023596 0.025552 0.027547 
0.000000 0.054679 0.063442 0.069678 0.075782 0.082017 0.088389 
0.000000 0.272977 0.316453 0.348500 0.380039 0.412200 0.444997 

T a b l e  1. Minimum eigenvMues for 1-D orthographic known equi-angular motion 

(assmning  t h a t  Z >> A02). Increas ing  the  ex ten t  of the  xi c o m p a r e d  to  the  
zi d i rec t ly  increases  the  nf in imum eigenvalue,  i.e., it  decreases  the  s t r u c t u r e  
uncer ta in ty .  This  resul t  is somewha t  surpr is ing ,  and  suggests  t h a t  f l a t te r  ob j e c t s  
can be r econs t ruc t ed  be t t e r .  

We can numer ica l ly  compu te  the  values of A for a range  of J and  AO values.  
For  example ,  wi th  J = 1, AO = 0.1 r ad  ~ 6 ~ , and  X = Z = 1, we have A = 
{0.0000664436, 1.98064, 3.0193}. For  the  smal les t  eigenvalue,  A = 0.0000664436, 
we have a co r respond ing  a = 0.0666676 a n d / 3  = 10.0001. 

Once the  smal les t  eigenvalue and e igenvector  have been compu ted ,  we can 
easi ly de t e rmine  some add i t iona l  e igenvectors .  Any  vec tor  which consists  pure ly  
of xi or z, values which is also o r thogona l  to A p m  is an eigenvector ,  e.g., 

e = [2:1 0 - 3 ;  0 0 . . .  0 ] 0 ]  . 

The  eigenvalues co r respond ing  to the  pure  x e igenvectors  are  C, while the  z 
eigenvalues are  S. In o ther  words,  once the  global  bas- re l ief  u n c e r t a i n t y  has  
been accoun ted  for (squashing in z and  smal le r  bulging in x), t i le var iance  in x 
pos i t ion  e s t ima tes  is p ropo r t i ona l  to C -~ and  in z pos i t ions  is p r o p o r t i o n a l  to 
S ~, i.e., exac t ly  the  expec ted  t r i angu l a t i on  error  for known camera  posi t ions .  

For the above  example  with J = 1 (3 f rames) ,  A0 = 0 . 1 r a d  ~ 6 ~ , and  
X =- Z = 1, the  values for C and S are  2.98 and 0.0199, respect ively.  F rom 
this,  we see t h a t  the  cor re la ted  dep th  u n c e r t a i n t y  due to the  mot ion  u n c e r t a i n t y  
is a factor  of 0.0199/0.00006644 = 300 t imes  g rea te r  t h a n  the ind iv idua l  d e p t h  
uncer ta in t ies .  A full t ab le  of /~min aS a funct ion  of F = 2 J  + 1 ( the number  of 
f rames)  and  0to t = ( F  -- 1)/_.~0 ( the t o t a l  r o t a t i o n  angle) is shown in Table  1. 

4.3 M o r e  t h a n  two  frames ,  w i t h o u t  m o t i o n  cons tra in t  

If we take  the  same d a t a  set as above,  bu t  remove the  add i t i ona l  knowledge  of 
equ i -angu la r  s teps,  we end up solving for each mo t ion  (angle} e s t ima te  separa te ly .  
The  equa t ions  for Ap~,  A p ~ m j ,  and  A m j  are  given in (13-14) ,  wi th  D = 0. In 
this case, we do not  have a closed form solut ion.  However,  pe r fo rming  a mmmr ica l  
eigenvahle analys is  of the  A m a t r i x  using a set of 9 po in t s  s ampled  on the  uni t  
square,  i.e., {(x, z), x, z E { - 1 , 0 ,  1}}, we o b t a i n  resul ts  t h a t  are  very  close to  
those shown in Table  1 (see [10] for deta i ls ) .  
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Amin F = 2  F = 3  F = 4  F = 5  F = 6  F = 7  F = 8  
0tot = 11.5 ~ 
0to~ = 22.9 ~ 
0tot = 34.4 ~ 
0tot = 45 ~ 
0tot = 60 ~ 
0tot = 90 ~ 

0.000175 0.000214 0.000239 0.000269 0.000299 0.000331 0.000364 
0.000690 0.001289 0.001462 0.001633 0.001803 0.001981 0.002158 
0.001512 0.004372 0.004972 0.005491 0.006009 0.006510 0.007024 
0.002512 0.009905 0.011282 0.012020 0.012959 0.013460 0.014070 
0.004234 0.020246 0.022853 0.021650 0.021870 0.020495 0.019727 
0.008381 0.032074 0.032623 0.027976 0.026149 0.023367 0.021596 

Table 2. Minimum eigenvalues for 3-D perspective projection, equi-angular rotation 
around y axis, r /=  0.1. 

5 Perspect ive  in 3-D 
Our full-length paper  contains analyses of or thography in 3-D and the perspec- 
tive seanline model [10]. Due to space limitations, we now jump directly to the 
full 3-D perspective model. Here, we know that  the two-frame problem has a 
solution, although our results on the simpler camera models suggest that  the 
reconstructions may be particularly sensitive to noise. 

In this section, we briefly discuss results of numerical eigenvalue analysis of 
pure object-centered rotat ion (which in camera-centered coordinates is actually 
both rotation and translation),  and pure forward translation. Ignoring the ef- 
fects of motion across the retina, these two cases capture the basic motion cues 
available to structure from motion. In our experiments, we used a 15-point data  
set consisting of the 8 corners of a unit cube, the 6 cube faces, and the origin. 

5.1 M o s t l y  r o t a t i o n s  

The computed eigenvalues for pure rotation are shown in Table 2. Compared 
to the orthographic case (Table 1), we see some striking differences. First, the 
two-frame problem is now soluble (up to a scale ambiguity, of course). Second, 
for small viewing angles, there is marked improvement even for multiple frames. 
Third, the results for large viewing angles with small r/'s are significantly inferior 
to the orthographic results. This appears  to be caused by ambiguities in camera 
motion along the optical axis (t~), which are neglected in the orthographic case. 

The tables of ~min with varying r /a re  presented in [10] for the two and three 
frame problems. For the two-frame case, doubling the amount  of perspective 
distortion V results in a fourfold increase in Ami, (and hence a halving of the 
RMS error). For the three-frame case, the results are less sensitive to r/. 

For a typical minimum eigenvector (e.g., a three-frame problem with ~1 = 0.1 
and Otot = 11.5~ the majori ty  of the ambiguity is depth scaling. However, the 
eigenvector is not a pure affine transform of the 3-D coordinates (this has been 
verified numerically). Our conjecture is that  t h e  minimum eigenveetor may be 
a projective t ransformation of the 3-D points, i.e., that  the main ambiguity is 
projective, but we have not yet found a proof for this conjecture. 

5.2 L o o m i n g  

The motion of a camera forward in a 3-D world creates a different kind of 
parallax, which can also be exploited to compute structure from motion. To 
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compute the ambiguities in this kind of motion, we used the same approach as 
before, except with no rotat ion and pure forward motion (t .  r 0). 

Using our usual 15-point data  set results in some unexpected behavior: four 
of the eigenvalues are zero. This is because the z coordinates of the three points 
on the optical axis cannot be recovered as they lie on the focus of expansion. This 
is a severe limitation of recovering structure from looming: points near the focus 
of expansion are recovered with extremely poor accuracy. In our experiments,  
we use a 12-point data  set instead, i.e., the 15-point set with the three points 
(x, y) = (0, 0) removed. The numerical results can be found in [10]. 

In one set of experiments, we calculate /~min aS a function of the number of 
frames F and the total  extent of forward motion t= (the object being viewed is a 
unit cube with coordinates [ -1 ,  1]a). The two-frame results are almost as good 
as the three frame results with the same extent of motion. The value of Ami, 
appears  to depend quadratically on the total extent of motion. Overall, however, 
these results are much worse than those available with object-centered rotation. 

In another set of experiments, we calculate k~i,~ as a function of ~l, i.e., tile 
amount  of perspective distortion. It  appears  that  /~min depends cubically on q, 
at least for small t .s.  To obtain reasonable estimates, therefore, it is necessary 
to both use a wide field of view and a large mnount of motion relative to the 
scene depth. 

6 D i s c u s s i o n  

The results presented in this paper  suggest that  in many situations where struc- 
ture from motion might be applied, the solutions are extremely sensitive to noise. 
In fact, very few results of convincing quality are available. Those cases where 
metrically accurate results have been demonstra ted ahnost always use a large 
amount  of rotation [5]. 

This raises the obvious question: are current s t ruc tme from motion algo- 
r i thms of practical significance? Tile situation is perhaps not that  bad. For large 
object rotations, we can indeed recover accurate reconstructions. Furthermore,  
for scene reconstruction, using cameras with large fields of view, several camera 
mounted in different directions, or even panoramic images, should remove most  
of the ambiguities. 

The general approach developed in this paper,  i.e., eigenvalue analysis of the 
Hessian (information) matr ix  appem-s to explain most  of the known ambiguities 
in structure from motion. However, there are certain ambiguities (e.g., depth 
reversals under orthography, or multiplicities of solutions with few points and 
fl'ames) which will not be detected by this analysis because they correspond to 
multiple local minima of the cost function in the parameter  space. Furthermore,  
analysis of the information matrix can only predict the sensitivity of the results to 
small amounts of image noise. Further study using empirical methods is required 
to determine the limitations of our approach. 

Using the mininmm eigenvalue to predict the overall reconstruction error 
may fail when the dominant ambiguities are in the motion parameters  (e.g., 
what appears to be happening under perspective for large motions). Comput ing 
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the RMSpo8 error directly from the covariance matrix A -1 would be more useful 
in these cases, and we plan to carry out this analysis. 

6.1 F u t u r e  w o r k  

We are currently performing an error analysis on the results of an optimal struc- 
ture from motion algorithm [4] with noisy data to see if they agree with the 
errors predicted by our analysis. In particular, we are estimating the (scaled) 
metric, affine, and projective reconstruction errors to determine which kinds of 
errors dominate. 

In future work, we plan to compare results available with object;centered and 
camera-centered representations (Equations 3-4). Our guess is that  the former 
will produce estimates of better  quality. Similarly, we would like to analyze the 
effects of mis-estimating internal calibration parameters such as focal length, and 
to study the feasibility of estimating them as part of the reconstruction process. 
The results presented here have assumed for now that  feature points are visible 
in all images. Our approach generalizes naturally to missing data points. In 
particular, we would like to study the effects feature tracks with relatively short 
lifetimes. 

Finally, it appears that  the portion of the uncertainty matrix which is cor- 
related can be accounted for by a small number of modes. This suggest that  
an efficient recursive structure from motion algorithm could be developed which 
avoids the need for using full covariance matrices [17] but which performs sig- 
nificantly better than algorithms which ignore such correlations. 

7 C o n c l u s i o n s  

This paper has developed new techniques for analyzing the fundamental am- 
biguities and uncertainties inherent in structure from motion. Our approach is 
based on examining the eigenvalues and eigenvectors of the Hessian matr ix in 
order to quantify the nature of these ambiguities. The eigenvalues can also be 
used to predict the overall accuracy of the reconstruction. 

Under orthography, the bas-relief ambiguity dominates the reconstruction 
error, even with large numbers of frames. This ambiguity disappears, however, 
for large object-centered rotations. For perspective cameras, two-frame solutions 
are possible, but there must still be a large amount of object rotation for best 
performance. Using three of more frames avoids some of the sensitivities asso- 
ciated with two-frame reconstructions. Translations towards the object are an 
alternative source of shape information, but these appear to be quite weak unless 
large fields of views and large motions are involved. 

When available, prior information about the structure or motion (e.g., ab- 
solute distances, perpendicularities) can be used to improve the accuracy of the 
reconstructions. Whether 3-D reconstruction errors (for modeling) or motion 
estimation errors (for navigation) are most significant for a given application 
determines the conditions which produce acceptable results. In any case, careful 
error analysis is essential in ensuring that  the results of structure from motion 
algorithms are sufficiently reliable to be used in practice. 
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