Abstract
The co-relation of a partially ordered set (poset) holds true between a and b iff neither a<b nor b<a. Since the co-relation does not change if we proceed to the dual poset, the co-relation determines the order relation at most up to duality. This remark leads us to the idea of "natural order": A poset is called a natural order iff the order relation is determined uniquely up to duality by the co-relation. If P is a poset consisting of three elements a, b, and c with a<b, a<c, and neither b<c nor c<b, then (P,≤) is a natural order, the underlying undirected graph of which forms a v-shaped figure. A poset is called "v-connected" iff any two edges in the underlying undirected graph can be "connected" by a sequence of v-shaped figures. It will be proved that a poset is a natural order iff it is v-connected. Applying this result to occurrence posets (a special kind of posets corresponding to occurrence nets) it will turn out that connected occurrence posets with the property that all of its elements have only a finite number of predecessors and successors are natural orders iff some simple, "locally" verifiable conditions hold true.
Preview
Unable to display preview. Download preview PDF.
6 References
Best, E.; Merceron, A.: A Study of Natural Orders in Occurrence Nets. — St. Augustin: Gesellschaft für Mathematik und Datenverarbeitung Bonn, ISF, Begrund-10 (23.8.1982)
Fernandez, C.; Thiagarajan, P. S.: A Model of Non-Sequential Processes. — St. Augustin: Gesellschaft für Mathematik und Datenverarbeitung Bonn, ISF-Report 82.05 (1982)
Genrich, H. J.; Stankiewicz-Wiechno, E.: A Dictionary of some Basic Notations of Net Theory. In: Lecture Notes in Computer Science Vol. 84: Net Theory and Applications, pp. 519–535. — Berlin: Springer-Verlag (1980)
Petri, C. A.: Concurrency. In: Lecture Notes in Computer Science Vol. 84: Net Theory and Applications, pp. 251–260. — Berlin: Springer-Verlag (1980)
Petri, C. A.: State-Transition Structures in Physics and in Computation. In: International Journal of Theoretical Physics 21 (1982), pp. 979–992
Plünnecke, H.: Natural Orders. — St. Augustin: Arbeitspapiere der GMD Nr. 93 (1984)
Plünnecke, H.: K-density, N-density, and Finiteness Properties. In: Lecture Notes in Computer Science Vol. 188: Advances in Petri Nets 1984, pp. 392–412. — Berlin: Springer-Verlag (1985)
Scheschonk, G.: Eine auf Petri-Netzen basierende Konstruktions-, Analyse-und (Teil-)Verifikationsmethode zur Modellierungs-unterstützung bei der Entwicklung von Informationssystemen. — Berlin: Technische Universität, Dissertation (1984)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Plünnecke, H. (1986). Determination of a poset by its co-relation. In: Rozenberg, G. (eds) Advances in Petri Nets 1985. APN 1985. Lecture Notes in Computer Science, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016221
Download citation
DOI: https://doi.org/10.1007/BFb0016221
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-16480-7
Online ISBN: 978-3-540-39822-6
eBook Packages: Springer Book Archive