Skip to main content

On the computational complexity of codes in graphs

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1988 (MFCS 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 324))

  • 184 Accesses

Abstract

This paper linke to continuing research of the first author on codes in graphs [7–11]. Here codes are studied from the point of view of their computational complexity. It is shown that the problem of perfect code recognition is NP-complete even when resiricted to k-regular graphs (k≥4) or to 3-regular planar graphs. On the other hand in the case of trees and graphs of bounded tree-width an optimal ϑ(n) algorithm is developed. Some optimization problems are also investigated.

Partially supported by IMA, University of Minnesota, with funds provided by National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.B. Allan,R. Laskar,S. Hedetniemi: A note on total domination. Discrete Math. 49(1984),7–13.

    Google Scholar 

  2. M.R.Best: A contribution to the nonexistence of perfect codes. Mat Centrum Amsterdam,1982.

    Google Scholar 

  3. N. Biggs:Perfect codes in graphs. J. Combin. Theory ser. B, 15(1973), 289–296.

    Google Scholar 

  4. B. Bollobás: Graph theory: an introductory course. Springer-Verlag, New York,1979.

    Google Scholar 

  5. M.R. Garey, D.S. Johnson: Computers and Intractability: a guide to the theory of NP-completeness. W.H.Freeman, San francisco,1979.

    Google Scholar 

  6. P. Hammond,D.H. Smith: Perfect codes in the graphs O k, J. Combin. Theory ser. B,19(1975),239–255.

    Google Scholar 

  7. J.Kratochvíl:Perfect codes in graphs and their powers (in Czech) PhD Thesis, Charles University,1987.

    Google Scholar 

  8. J.Kratochvíl,J.Matoušek,J.Malý: On the existence of perfect codes in random graphs (submitted)

    Google Scholar 

  9. J. Kratochvíl: Perfect codes over graphs. J. Combin. Theory Ser.B, 40(1986),224–228.

    Google Scholar 

  10. J. Kratochvíl: 1-perfect codes over self-complementary graphs. Comment. Math. Univ. Carolin.,26(1985),589–595.

    Google Scholar 

  11. J.Kratochvíl: Perfect codes in general graphs. Proc. 7th Hungarian colloq. on Combinatorics, Eger, 1987 (to appear).

    Google Scholar 

  12. A. Meir,J.W. Moon: Relations between packing and covering numbers of a tree. Pacific J.Math.61(1975),225–233.

    Google Scholar 

  13. N. Robertson,P.D. Seymour: Graph minors III. Planar tree-width. J. Combin. Theory Ser. B, 36(1984),49–64.

    Google Scholar 

  14. D.H. Smith: Perfect codes in O k and L(O k). Glasgow Math. J.,21(1980) 169–172.

    Google Scholar 

  15. R.E. Tarjan: Data structures and network algorithms. SIAM, Philadelphia,1983.

    Google Scholar 

  16. A. Tietväväinen: On the nonexistence of perfect codes over finite fields. SIAM J.Appl.Math.,24(1973),86–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michal P. Chytil Václav Koubek Ladislav Janiga

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kratochvíl, J., Křivánek, M. (1988). On the computational complexity of codes in graphs. In: Chytil, M.P., Koubek, V., Janiga, L. (eds) Mathematical Foundations of Computer Science 1988. MFCS 1988. Lecture Notes in Computer Science, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017162

Download citation

  • DOI: https://doi.org/10.1007/BFb0017162

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50110-7

  • Online ISBN: 978-3-540-45926-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics