
Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

637

Advisory Board: W. Brauer D. Giles J. Stoer

Y. Bekkers J. Cohen (Eds.)

Memory Management
International Workshop IWMM 92
St. Malo, France, September 17-19, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-Strage 1
W-7500 Karlsruhe, FRG

Juris Hartmanis
Department of Computer Science
Cornell University
5149 Upson Hall
Ithaca, NY 14853, USA

Volume Editors

Yves Bekkers
IRISA, Campus de Beaulieu
F-35042 Rennes, France

Jacques Cohen
Mitchum School of Computer Science, Ford Hall
Brandeis University, Waltham, MA 02254, USA

CR Subject Classification (1991): D.1, D.3-4, B.3, E.2

ISBN 3-540-55940-X Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55940-X Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Drnckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

Preface

Storage reclamation became a necessity when the Lisp function cons was originally
conceived 1 . That statement is simply a computer-oriented version of the broader precept:
Recycling becomes unavoidable when usable resources are depleted. Both statements suc-
cinctly explain the nature of the topics discussed in the International Workshop on Memory
Management (IWMM) that took place in Saint-Malo, France, in September 1992. This vol-
ume assembles the refereed technical papers which were presented during the workshop.

The earlier programming languages (such as Fortran) were designed so that the size of
the storage required for the execution of a program was known at compile time. Subsequent
languages (such as Algol 60) were implemented using a stack as a principal data-structure
which is managed dynamically: information pushed onto a stack uses memory space which
can be later released by popping.

With the introduction of structures (also called records) in more recent programming
languages, it became important to establish an additional run-time data structure: the
heap, which is used to store data, cells containing pointers to other cells. The stack.heap
arrangement has become practically universal in the implementation of programming lan-
guages. An important characteristic of the cells in the heap is that the data they contain
can become "useless" since they are not pointed to by any other cells. Reclamation of the
so-called "useless cells" can be performed in an ad hoc (manual) manner by having the
programmer explicitly return those ceils to the run-time system so that they can be re-
used. (In ad hoc reclamation the programmer has to exercise great caution not to return
cells containing valuable data.) This is the case of languages like Pascal or C which provide
primitive procedures for returning useless cells. In the case of languages such as Lisp and
Prolog reclamation is done automatically using a run-time process called garbage.collection
which detects useless cells and makes them available for future usage.

Practically all the papers in this volume deal with the various aspects of managing and
reclaLming memory storage when using a stack-heap model. A peculiar problem of memory
management strategies is the unpredictability.of computations. The undecidability of the
halting problem implies that, in general, it is impossible to foresee how many ceils will be
needed in performing complex computations.

There axe basically two approaches for performing storage reclamation: one is incrv.
mental, i.e., the implementor chooses to blend the task of collecting with that of actual
computation; the other is what we like to call the mafiana method - wait until the en-
tire memory is exhausted to trigger the time-consuming operation of recognizing useless
cells and making them available for future usage. A correct reclamation should ensure the
following properties:

- No used cell will be (erroneously) reclaimed.
- All useless cells will be reclaimed.

Violating the first property is bound to have tragic consequences. A violation of the second
may not be disastrous, but could lead to a premature halting of the execution due to the
lack of memory. As a matter of fact, conservative collectors have been proposed to trade a
(small) percentage of unreclaimed useless cells for a speedup of the collection process.

An important step in the collection is the identification of useless cells. This can be
achieved by marking all the useful cells and sweeping the entire memory to collect useless

a The reader is referred to the chapter on the History o] Lisp, by John McCarthy, which ap-
peared in History of Programming Languages, edited by Richard L. Wexelblat, Academic
Press, 1981, pp 173-183.

VI

(unmarked) cells. This process is known as mark-and.sweep. Another manner of identifying
useless cells is to keep reference counts which are constantly updated to indicate the number
of pointers to a given cell. When this number becomes zero the cell is identified as useless.
If the mark-and-sweep or the reference count techniques fail to locate any useless cells, the
program being executed has to halt due to lack of storage. (A nasty situation may occur
when successive collections succeed in reclaiming only a few cells. In such cases very little
actual computation is performed between consecutive time-consuming collections.)

Compacting collectors are those which compact the useful information into a contiguous
storage area. Such compacting requires that pointers be properly readjusted. Compacting
becomes an important issue in paging systems (or in the case of hierarchical or virtual
memories) since the compacted useful information is likely to result in fewer page faults,
and therefore in increased performance.

An alternative method of garbage-collection which has drawn the attention of imple-
mentors in recent years is that of copying. In this case the useful cells are simply copied
into a "new" area from the "old" one. These areas are called semi-spaces. When the space
in the "new" area is exhausted, the "old" and "new" semi-spaces are swapped. Although
this method requires twice the storage area needed by other methods, it can be performed
incrementally, thus offering the possibility of real-time garbage-collection, in which the
interruptions for collections are reasonably short.

The so-called generational garbage-collection is based on the experimental fact that
certain cells remain used during substantial periods of the execution of a program, whereas
others become useless shortly after they are generated. In these cases the reclaiming strategy
consists of bypassing the costly redundant identification of "old generation" cells.

With the advent of distributedand parallel computers reclamation becomes considerably
more complex. The choice of storage management strategy is, of course, dependent on the
various types of existing architectures. One should distinguish the cases of:

1. Distributed computers communicating via a network,
2~ Parallel shared-memory (MIMD) computers, and
3. Massively parallel (SIMD) computers.

In the case of distributed reclamation it is important that collectors be fault tolerant: a
failure of one or more processors should not result in loss of information. The term on-the-
fly garbage-collection is (usually) applicable to parallel shared-memory machines in which
one or more processors are dedicated exclusively to collecting while others, called mutators,
are responsible for performing useful computations which in turn may generate useless cells
that have to be reclaimed.

Some features of storage management are language-dependent. Presently, one can distin-
guish three major paradigms in programming language design: functional, logic, and object.
oriented. Although functional languages, like Lisp~ were the first to incorporate garbage-
collection in their design, both logic and object-oriented language implementors followed
suit. Certain languages have features that enable their implementors to take advantage of
known properties of data in the stack or in the heap so as to reduce the execution time
needed for collection and/or to reclaim as many useless cells as possible.

In the preceding paragraphs we have briefly defined the terms: mark-and.sweep, refer-
ence count, compacting, copying, incremental, generational, conservative, distributed, par-
allel, on-the-fly, real-time, and language-dependent features. These terms should serve to
guide the reader through the various papers presented in this volume.

We suggest that non-speclalists start by reading the three survey papers. The first
provides a general overview of the recent developments in the field; the second specializes
in distributed collection, and the third deals with storage management in processors for logic
programs. The other chapters in this volume deal with the topics of distributed, parallel, and

VII

incremental collections, collecting in functional, logic, and object-oriented languages, and
collections using massively parallel computers. The tlnal article in this volume is an invited
paper by H. G. Baker in which he proposes a "reversible" Lisp-like language (i.e., capable of
reversing computations) and discusses the problems of designing suitable garbage-collectors
for that language.

We wish to thank the referees for their careful evaluation of the submitted papers, and
for the suggestions they provided to the authors for improving the quality of the presenta-
tion. Finally, it is fair to state that, even with technological advances, there will always be
limited memory resources, especially those of very fast access. These memories will likely
remain costlier than those with slower access. Therefore many of the solutions proposed at
the IWMM are likely to remain valid for years to come.

July 1992 Yves Bekkers
Jacques Cohen

P r o g r a m C o m m i t t e e

Chair
Jacques Cohen

Members
Joel F. Bartlett
Yves Bekkers
HanwJurgen Boehm
Manrice Bruynooghe
Bernard Lang
David A. Moon
Christian Queinnec
Dan Sahlin
Taiichi Yuasa

Brandeis University, Waltham, MA, USA

DEC, Palo Alto, CA, USA
INRIA-IRISA, Rennes, France
Xerox Corporation, Palo Alto, CA, USA
Katholieke Universiteit, Leuven, Belgium
INRIA, Le Chesnay, France
Apple Computer, Cambridge, MA, USA
Ecole Polytechnique, Palaisean, France
SICS, Kista, Sweden
Toyohashi Univ. of Tech., Toyohashi, Japan

We thank all the people who helped the program committee in the refereering pro-
cess, some of whom are listed below: K. Ali, M. Ban~tre, P. Brand, A. Callebou, P. Fradet,
S. Jansson, P. Magnusson, A. Mari6n, R. Moolenaar, A. Mulkers,
O. Ridoux, A. Sanlsbury, T. SjSland, L. Ungaro, P. Weemeeuw.

Yves Bekkers

Workshop Coordinator

INRIA-IRISA, Rennes, France

S p o n s o r e d b y

INRIA
University of Rennes I

CNRS-GRECO Programmation

I n c o o p e r a t i o n w i t h

ACM SIGPLAN

Table of Con ten t s

S u r v e y s

Uniprocessor Garbage Collection Techniques
Paul R. Wi l son . 1

Collection Schemes for Distributed Garbage
S.E. Abdullahi , E .E . Miranda, G.A. R ingwood . 43

Dynamic Memory Management for Sequential Logic Programming Languages
Y. Bekkers , 0 . R idoux , L. Ungaro . 82

D i s t r i b u t e d S y s t e m s I

Comprehensive and Robust Garbage Collection in a Distributed System
N.C. Juul, E. Jul . 103

D i s t r i b u t e d S y s t e m s I I

Experience with a Fault-Tolerant Garbage Collector in a
Distributed Lisp System

D. Plain]ossg, M. Shapiro . 116

Sealable Distributed Garbage Collection for Systems of Active Objects
N. Venkatasubramanian , G. Agha, C. Talcott . 134

Distributed Garbage Collection of Active Objects with no
Global Synchronisation

I. P u a u t . 148

Parallelism I

Memory Management for Parallel Tasks in Shared Memory
K.G. Langendoen, H.L. Muller, W.G. Vree . 165

Incremental Multi-Threaded Garbage Collection on
Virtually Shared Memory Architectures

T. Le Sergent , B. B e r t h o m i e u . 179

Functional l a n g u a g e s

Generational Garbage Collection for Lazy Graph Reduction
J. Seward . 200

A Conservative Garbage Collector with Ambiguous Roots for
Static Typeehecking Languages

E. Ghaii loux . 218

An Efficient Implementation for Coroutines
L. M a t e u . 230

An Implementation of an Applicative File System
B.C. Heck, D.S. Wise . 248

Logic Programming Languages I
A Compile-Time Memory-Reuse Scheme for Concurrent Logic Programs

S. Duvvuru, R. Sundararajan, E. Tick, A. V. S. SastrSt, L. Hansen,
X. Zhong . 264

Object Oriented Languages
Finalization in the Collector Interface

B. Hayes . 277

Precompiling C + + for Garbage Collection
D.R. Edelson . 299

Garbage Collection-Cooperative C + +
A. D. Samples . 315

Logic Programming Languages II
Dynamic Revision of Choice Points During Garbage Collection
in Prolog [II/III]

J.F. Pique . 330

Ecological Memory Management in a Continuation Passing Prolog Engine
P. Tarau . 344

Incremental
Replication-Based Incremental Copying Collection

S. Nettles~ J. O'Toole, D. Pierce, N. Haines . 357

Atomic Incremental Garbage Collection
E.K. Kolodner, W.E. Weihl . 365

Incremental Collection of Mature Objects
R.L. Hudson, J.E.B. Moss . 388

Improving Locality
Object Type Directed Garbage Collection to Improve Locality

M.S. Lain, P.R. Wilson, T.G. Moher .. 404

Allocation Regions and Implementation Contracts
V. Delacour ... 426

Parallelism II

A Concurrent Generational Garbage Collector for a Parallel Graph Reducer
N. Rb~jemo . 440

Garbage Collection in Aurora : An Overview
P. Weemeeuw, B. Demoen . 454

XI

M a s s i v e l y P a r a l l e l A r c h i t e c t u r e s

Collections and Garbage Collection
S.C. Merrall, J .A . Padget . 473

Memory Management and Garbage Collection of an
Extended Common Lisp System for Massively Parallel SIMD Architecture

T. Yuasa . 490

I n v i t e d Speaker
NREVERSAL of Fortune - The Thermodynamics of Garbage Collection
H.G. Baker . 507

A u t h o r I n d e x . 525

