Abstract
Analogy is clearly one of the key issues of Learning, since it constitutes a major tool for constructing new concepts, or new rules or new strategies. Our view of analogy is that it must take into account not only the resemblances within a set of different datas but also the differences among them. We describe how to apply this view of the analogical process to incremental similarity-based learning.
Preview
Unable to display preview. Download preview PDF.
Bibliography
Carbonell J.G.: "Experiential Learning in Analogical Problem Solving", Proc. of the Second Meeting of the American Association for AI, Pittsburg, PA, 1982.
Chouraqui E.: "Construction of a model for reasoning by analogy", Proceedings of the European Conference on Artificial Intelligence, pp. 48–53, Orsay, France.
DeJong G., Mooney R. "Explanation Based Learning: an Alternative View", Machine Learning Journal, Volume 1, Number 2, 1986, pp 145–176.
Kodratoff Y.: "Generalizing and Particularizing as the techniques of Learning", Computers and Artificial Intelligence 2, pp.417–441, 1983.
Kodratoff Y., Ganascia J.G.: "Improving the Generalization Step in Learning", Machine Learning, an Artificial Intelligence Approach, vol. II, eds. Michalski R.S., Carbonell J.G., Mitchell T.M; Morgan Kaufmann Publishers, pp 215–244.
Michalski R.S., "A theory and Methodology of Inductive Learning", Machine Learning, an Artificial Intelligence Approach, Michalski R.S., Carbonell J.G., Mitchell T.M. eds, Tioga Publishing Company 1983, pp. 83–129.
Mitchell T.M., Keller R., Kedar-Cabelli S., "Explanation Based Generalisation: An Unifying View." Machine Learning Journal, Volume 1, Number 1, 1986, pp 47–80.
Vrain C.: "Un Outil de Généralisation Utilisant Systématiquement les théorèmes: le système OGUST", Thèse de troisième cycle soutenue le 25 Février 1987, Université Paris Sud, Orsay.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Vrain, C., Kodratoff, Y. (1989). The use of analogy in incremental SBL. In: Morik, K. (eds) Knowledge Representation and Organization in Machine Learning. Lecture Notes in Computer Science, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017225
Download citation
DOI: https://doi.org/10.1007/BFb0017225
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-50768-0
Online ISBN: 978-3-540-46081-7
eBook Packages: Springer Book Archive