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Abstract 
This paper describes how apprenticeship learning tech- 

niques can be used to refine the knowledge base of an ex- 
pert system for heuristic classification problems. The de- 
scribed method is an alternative to the long-standing prac- 
tice of creating such knowledge bases via induction from 
examples. The form of apprenticeship learning discussed 
in this paper is a form of learning by watching, in which 
learning occurs by completing failed explanations of human 
problem-solving actions. An apprenticeship is the most 
powerful method that human experts use to refine their ex- 
pertise in knowledge-intensive domains such as medicine; 
this motivates giving such capabilities to an expert system. 
A major accomplishment in this work is showing how an 
explicit representation of the strategy knowledge to solve 
a general problem class, such as diagnosis, can provide a 
basis for learning the knowledge that is specific to a par- 
ticular domain, such as medicine. 

I Introduction 

Traditional methods for semi-automatic refinement of the 
knowledge base of an expert system for heuristic classifi- 
cation problems [Clancey, 19851 have centered around in- 
duction over a case library of examples. Well-known sys 
terns that demonstrate this approach include ID3 [Quin- 
Ian, 19831, INDUCE [Michalski, 19831, SEEK [Bolitakis 
and Weiss, 1984; Ginsberg et al., 19851, and RL [Fu and 
Buchanan, 19851. Over the last five years, we have been 
investigating a different approach to knowledge base refine- 
ment, called apprenticeship learning. This paper provides 
an overview of how the ODYSSEUS apprenticeship program 
improves an expert system by watching an expert.l 

In induction from examples, a training instance consists 
of an unordered set of feature-value pairs for an entire di- 
agnostic session and the correct diagnosis. In contrast, 
a training instance in apprenticeship learning is a single 
feature-value pair given within the context of a problem- 
solving session. This training instance is hence more fine- 
grained, can exploit the information implicit in the order 
in which the diagnostician collects information, and allows 
obtaining many training instances from a single diagnos- 
tic session. Our apprenticeship learning program attempts 
to construct an explanation of each training instance; an 

’ ODYSSEUS can also improve an expert system by watch- 
ing the expert system solve problems. This is another impor- 
tant form of apprenticeship learning, which is usually referred to 
as learning by doing, but is beyond the scope of this paper. The 
reader interested in further details is referred to [Wilkins, 19871. 

explanation failure occurs if none is found. The appren- 
ticeship program then conjectures and tests modifications 
to the knowledge base that allow an explanation to be 
constructed. If an acceptable modification is found, the 
knowledge base is altered accordingly. This is a form of 
learning by completing failed explanations. 

Apprenticeship learning involves the construction of ex- 
planations, but is different from explanation based learn- 
ing as formulated in EBG [Mitchell et al., 19861 and EBL 
[DeJong, 19861; ‘t 1 is also different from explanation based 
learning inLEAP [Mitchell et al., 19851, even thoughLEAP 
also focuses on the problem of improving a knowledge- 
based expert system. In EBG, EBL, and LEAP, the do- 
main theory is capable of explaining a training instance 
and learning occurs by generalizing an explanation of the 
training instance. In contrast, in our apprenticeship re- 
search, a learning opportunity occurs when the domain 
theory, which is the domain knowledge base, is incapable 
of producing an explanation of a training instance. The 
domain theory is incomplete or erroneous, and all learning 
occurs by making an improvement to this domain theory. 

2 Heracles Expert §ystem Shell 

ODYSSEUS is designed to improve any knowledge base 
crafted for HERACLES, an expert system shell that was 
created by removing the medical domain knowledge from 
the NEOMYCIN expert system [Clancey, 19841. HERA- 
CLES uses a problem-solving method called heuristic &as- 
sification, which is the process of selecting a solution out of 
a pre-enumerated solution set, using heuristic techniques 
[Clancey, 19851. Our experiments used the NEOMYCIN 
medical knowledge base for diagnosis of neurological disor- 
ders. In a HERACLES-based system, there are three types 
of knowledge: domain knowledge, problem state knowl- 
edge, and strategy knowledge.’ 

Domain knowledge consists of Mycin-like rules and sim- 
ple frame knowledge [Buchanan and Shortliffe, 19841. An 
example of rule knowledge is finding (phot ophobia, yes) 
-+ conclude (migraine-headache yes .5), meaning ‘if 
the patient has photophobia, then conclude the patient 
has a migraine headache with a certainty factor of .5’. A 
typical example of frame knowledge is subsumed-by(vi- 
ral-meningitis meningitis), meaning ‘hypothesis viral 
meningitis is subsumed by the hypothesis meningitis’. 

Problem state knowledge is knowledge generated while 
running the expert system. For example, rule-applied- 
(rulel63) says that Rule 163 has been applied during this 

‘In this paper, the term meta-level knowledge refers to strat- 
egy knowledge; and the term object-level knowledge refers to 
domain and problem state knowledge. 
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Figure 1: Overview of ODYSSEUS’ method in a learning 
by watching apprentice situation. This paper describes 
techniques that permit automation of each of the three 
stages of learning shown on the left edge of the figure. An 
explanation is a proof that shows how the expert’s action 
achieves a problem-solving goal. 

consultation. Another example is dif f erential(migra- 
ine-headache tension-headache), which says that the 
expert system’s active hypotheses are migraine headache 
and tension headache. 

Physician’s Final Diagnosis: 
25. Migraine Headache. 

Strategy knowledge is contained in the HERACLES shell. Figure 2: An example of what the ODYSSEUS apprentice 
The strategy knowledge approximates a cognitive model learner sees. The data requests in this problem-solving 
of heuristic classification problem solving. The different protocol were made by John Sotos, M.D. The physician 
problem-solving strategies that can be employed during also provides information on the focus of the data requests. 
problem solving are explicitly represented. This facilitates The answers to the data requests were obtained from an 
using the model to follow the the line-of-reasoning of a hu- actual patient file from the Stanford University Hospital, 
man problem solver. The strategy knowledge determines extracted by Edward Herskovits, M.D. 

what domain knowledge is relevant at any given time, and 
what additional information is needed to solve a particular 
problem case. 

The strategy knowledge needs to access the domain 
and problem state knowledge. To achieve this, the do- 
main and problem state knowledge is represented as tu- 
ples. Even rules are translated into tuples. For example, if 
Rule 160 is finding(diplopia yes) A findingcapha- 
sia yes) b conclude(hemorrhage yes .5), it would 
be translated into the following four tuples: evidence- 
.for(diplopia hemorrhage rule160 .5), evidence- 
.for(aphasia hemorrhage rule160 .5), antecedent- 
(diplopia ruleleO), antecedent(aphasia, rulel60). 
Strategy metarules are quantified over the tuples. Figure 3 
presents four strategy metarules in Horn clause form; the 
tuples in the body of the clause quantify over the domain 
and problem state knowledge. The rightmost metarule in 
Figure 3 encodes the strategy to find out about a symptom 
by finding out about a symptom that subsumes it. The 
metarule applies when the goal is to find out symptom Pl, 
and there is a symptom P2 that is subsumed by Pl, and P2 
takes boolean values, and it is currently unknown, and P2 
should be asked about instead of being derived from first 
principles. This is one of eight strategies in HERACLES for 
finding out the value of a symptom; this particular strat- 
egy of asking a more general question has the advantage 
of cognitive economy: a ‘no’ answer provides the answer 
to a potentially large number of questions, including the 
subsumed question. 

Patient’s Complaint and Volunteered Information: 
1. Alice Ecila, a 41 year old black female. 
2. Chief complaint is a headache. 

Physician’s Data Requests: 
3. Headache duration? 

focus=tension headache. 7 days. 
4. Headache episodic? 

focus=tension headache. No. 
5. Headache severity? 

focus=tension headache. 4 on O-4 scale. 
6. Visual problems? 

focus=subarachnoid hemorrhage. Yes. 
7. Double vision? 

focus=subarachnoid hemorrhage, tumor. Yes. 
8. Temperature? 

focus=infectious process. 98.7 Fahrenheit. 
. . . . . . 
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Group Hypothesis 
Metarule 

Test Hypothesis 
Metarule 

goal(test-hyps (H2)) :- 
evid-for(P1 H2 Rl CFl), 
not(rule-applied(Rl)), 
inpremise(P1 Rl), 
goal(applyrule( Rl). 

Applyrule 
Metarule 

goal(applyrule (Rl)) :- ’ 
not (rule-applied( Rl)) , 
inpremise( Pl Rl)), 
not(concluded(Pl)), 
goal(findout(Pl)), 
applyrule( Rl). 

Findout 
Metarule 

goal(f indout (Pl)) :- 
subsumes( P2 Pl), 
boolean( P2), 
not(concluded(P2)), 
askfirst(P2), 
goal(findout(P2)). 

Figure 3: Learning by completing failed explanations. Each path in the graph is a failed explanation proof of attempts 
to connect a findout question about visual problems to a high-level problem solving goal; the nodes in the graph are 
metarules. The highlighted path is currently being examined during the second stage of learning, in which Odysseus tries 
to add knowledge to the domain knowledge base to complete the failed highlighted explanation. Four of the metarules in 
this highlighted path are illustrated in Horn clause form. 

3 Odysseus’ Apprenticeship Learning 
Method 

The solution approach of the ODYSSEUS apprenticeship 
program in a learning by watching scenario is illustrated 
in Figure 1. As Figure 1 shows, the learning process in- 
volves three distinct steps: detect knowledge base (KB) 
deficiency, suggest KB repair, and evaluate KB repair. This 
section defines the concept of an explanation and then de- 
scribes the three learning steps. 

The main observable problem-solving activity in a diag- 
nostic session is finding out features-values of the artifact 
to be diagnosed; we refer to this activity as asking findout 
questions. An explanation in ODYSSEUS is a proof that 
demonstrates how an expert’s findout question is a logical 
consequence of the current problem state, the domain and 
strategy knowledge, and one of the current high-level strat- 
egy goals. An explanation is created by backchaining the 
meta-level strategy metarules; Figure 3 provides examples 
of these metarules represented in Horn clause form. The 
backchaining starts with the findout metarule, and contin- 
ues until a metarule is reached whose head represents a 
high-level problem-solving goal. To backchain a metarule 

requires unification of the body of the Horn clause with 
domain and problem state knowledge. Examples of high- 
level goals are to test a hypothesis, to differentiate between 
several plausible hypotheses, to ask a clarifying question, 
and to ask a general question. 

The first stage of learning involves the detection of a 
knowledge base deficiency. An expert’s problem solving 
is observed and explanations are constructed for each of 
the observed problem-solving actions. An example will 
be used to illustrate our description of the three stages 
of learning, based on the NEOMYCIN knowledge base for 
diagnosing neurology problems. The input to ODYSSEUS 
is the problem-solving behavior of a physician, John Sotos, 
as shown in Figure 2. In our terminology, Dr. Sotos asks 
findout questions and concludes with a final diagnosis. For 
each of his actions, ODYSSEUS generates one or more 
explanations of his behavior. 

When ODYSSEUS observes the expert asking a findout 
question, such as asking if the patient has visual problems, 
it finds all explanations for this action. When none can 
be found, an explanation failure occurs. This failure sug- 
gests that there is a difference between the knowledge of 
the expert and the expert system and it provides a learn- 
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ing opportunity. The knowledge difference may lie in any 
of the three types of knowledge that we have described: 
strategy knowledge, domain knowledge, or problem state 
knowledge. Currently, ODYSSEUS assumes that the cause 
of the explanation failure is that the domain knowledge is 
deficient. In the current example, no explanation can be 
found for findout question number 7, asking about visual 
problems, and an explanation failure occurs. 

The second step of apprenticeship learning is to con- 
jecture a knowledge base repair. A confirmation theory 
(which will be described in the discussion of the third 
stage of learning) can judge whether an arbitrary tuple 
of domain knowledge is erroneous, independently from the 
other knowledge in the knowledge base. A preprocessing 
stage allows the problem of erroneous knowledge to be cor- 
rected before the three stages of apprenticeship learning 
commences. The preprocessing stage also removes unsuit- 
able knowledge. Knowledge is unsuitable if it is correct 
in isolation, but does not interact well with other knowl- 
edge in the knowledge base due to sociopathic interactions 
[Wilkins and Buchanan, 19861. Hence, when a KB defi- 
ciency is detected during apprenticeship learning, we as- 
sume the problem is missing knowledge. 

The search for the missing knowledge begins with the 
single fault assumption. 3 Conceptually, the missing knowl- 
edge could be eventually identified by adding a random 
domain knowledge tuple to the knowledge base and see- 
ing whether an explanation of the expert’s findout request 
can be constructed. How can a promising piece of such 
knowledge be effectively found? Our approach is to apply 
backward chaining to the findout question metarule, try- 
ing to construct a proof that explains why it was asked. 
When the proof fails, it is because a tuple of domain or 
problem state knowledge needed for the proof is not in 
the knowledge base. If the proof fails because of problem 
state knowledge, we look for a different proof of the find- 
out question. If the proof fails because of a missing piece 
of domain knowledge, we temporarily add this tuple to the 
domain knowledge base. If the proof then goes through, 
the temporary piece of knowledge is our conjecture of how 
to refine the knowledge base. 

Figure 3 illustrates the set of failed explanations that 
ODYSSEUS examines in connection with the unexplained 
action f indout (visual problems) - the right most node 
of the graph. Each path in the graph is a potential expla- 
nation and each node in a path is a strategy metarule. 
The failed explanation that ODYSSEUS is examining is 
highlighted, and the associated metarules are shown be- 
low the graph. For a metarule to be used in a proof, its 
variables must be instantiated with domain or problem 
state tuples that are present in the knowledge base. In 
this example, the evidence .f or tuple is responsible for 
the highlighted chain not forming a proof. It forms an 
acceptable proof if the tuple evidence. f or (photophobia 
acute.meningitis $rule $cf) or evidence.for(di- 
plopia acute .meningitis $rule $cf > is added to the 
knowledge base. During this step that generates repairs, 
neither the form of the left hand side of the rule (e.g., num- 

3The missing knowledge is conceptually a single fault, but 
because of the way the knowledge is encoded, we can learn more 
than one tuple when we learn rule knowledge. For ease of pre- 
sentation, this feature is not shown in the following examples. 

ber of conjuncts) or the strength is known. In the step to 
evaluate repairs, the exact form of the rule is produced in 
the process of evaluation of the worth of the tuple. 

The task of the third step of apprenticeship learning is 
to evaluate the proposed repair. To do this, we use a con- 
firmation theory containing a decision procedure for each 
type of domain knowledge that tells us whether a given 
tuple is acceptable. There are different types of tuples in 
HERACLES’ language. We only implemented a confirma- 
tion theory for three of the thirty-three different types of 
tuples in HERACLES’s language: evidence. f or, clar- 
ifying.question, and ask. general. question tuples. 

Evidence. f or tuples were generated in the visual prob- 
lems example. In order to confirm the first candidate tuple, 
ODYSSEUS uses an induction system that generates and 
evaluates rules that have photophobia in their premise and 
acute meningitis in their conclusion. A rule is found that 
passes the rule ‘goodness’ measures, and is automatically 
added to the object-level knowledge base. All the tuples 
that are associated with the rule are also added to the 
knowledge base. This completes our example. 

The confirmation theory also validates frame-like knowl- 
edge. An example of how this is accomplished will be de- 
scribed for clarify question tuples, such as clarify . ques- 
tions (headache-duration headache). This tuple means 
that if the physician discovers that the patient has a head- 
ache, she should always ask how long the headache has 
lasted. The confirmation theory must determine whether 
headache-duration is a good clarifying question for the 
‘headache’ symptom. To achieve this, ODYSSEUS first 
checks to see if the question to be clarified is related to 
many hypotheses (the ODYSSEUS explanation generator 
allows it to determine this), and then tests whether the 
clarifying question can potentially eliminate a high per- 
centage of these hypotheses. If these two criteria are met, 
then the clarify questions tuple is accepted. 

4 Experimental Results 

Our knowledge acquisition experiments centered on im- 
proving the knowledge base of the NEOMYCIN expert sys- 
tem for diagnosing neurology problems. The knowledge 
base of NEOMYCIN was constructed manually over a seven 
year period and had never been tested on a library of test 
cases. The NEOMYCIN vocabulary includes sixty diseases; 
our physician, Dr. John Sotos, determined that the ex- 
isting data request vocabulary of 350 manifestations only 
allowed diagnosis of ten of these diseases. Another physi- 
cian, Dr. Edward Herskovits, constructed a case library of 
115 cases for these ten diseases from actual patient cases 
from the Stanford Medical Hospital, to be used for testing 
ODYSSEUS. The validation set consisted of 112 of these 
cases. The most recent version of NEOMYCIN, version 
2.3, initially diagnosed 31% of these cases correctly. 

For use as a training set, problem-solving protocols were 
collected of Dr. Sotos solving two cases, consisting of ap- 
proximately thirty questions each. ODYSSEUS discovered 
ten pieces of knowledge by watching these two cases being 
solved; eight of these were domain rule knowledge. These 
eight pieces of information were added to the NEOMYCIN 
knowledge base of 152 rules, along with two pieces of frame 
knowledge that classified two symptoms as ‘general ques- 

Wilkins 649 



tions’; these are questions that should be asked of every 
patient. 

The set of 112 cases was rerun, and NEOMYCIN solved 
44% of the cases correctly, a 42% improvement in perfor- 
mance. The performance of NEOMYCIN before and af- 
ter learning is shown in Tables 1 and 2. All of this new 
knowledge was judged by Dr. Sotos as plausible medi- 
cal knowledge, except for a domain rule linking aphasia to 
brain abscess. Importantly, the new knowledge was judged 
by our physicians to be of much higher quality than when 
straight induction was used to expand the knowledge base, 
without the use of explanation based learning. 

The expected diagnostic performance that would be ob- 
tained by randomly guessing diagnoses is lo%, and the 
performance expected by always choosing the most com- 
mon disease is 18%. NEOMYCIN initially diagnosed 31% 
of the cases correctly, which is 3.44 standard deviations 
better than always selecting the disease that is a priori 
the most likely. On a student-t test, this is significant 
at a t=.OOl level of significance. Thus we can conclude 
that NEOMYCIN’s initial diagnostic performance is signif- 
icantly better than guessing. 

After the apprenticeship learning session, NEOMYCIN 
correctly diagnosed 44% of the cases. Compared to NEO- 
MYCIN’s original performance, the performance of NEO- 
MYCIN after improvement by ODYSSEUS is 2.86 standard 
deviations better. On a student-t test, this is significant 
for t = .006. One would expect the improved NEOMYCIN 
to perform better than the original NEOMYCIN in better 
than 99 out of 100 sample sets. 

It is important to note that the improvement occurred 
despite the physician only diagnosing one of the two cases 
correctly. The physician correctly diagnosed a cluster head- 
ache case and misdiagnosed a bacterial meningitis case. As 
is evident from examining Tables 1 and 2, the improve- 

Disease 

Brain Abscess 7 0 
Bacterial Meningitis 16 16 
Viral Meningitis 11 4 
Fungal Meningitis 8 0 
TB Meningitis 4 1 
Cluster Headache 10 0 
Tension Headache 9 9 
Migraine Headache 10 1 
Brain Tumor 16 0 
Subarachnoid Hem. 21 4 
None 0 0 

Totals 112 35 

Num- The False False 
ber Posi- Posi- Nega- 
Cases tives tives tives 

0 
47 
5 
0 
0 
0 
20 
1 
0 
0 
4 

77 

7 
0 
7 
8 
3 
10 
0 
9 
16 
17 
0 

77 

Table 1: Performance of NEOMYCIN before apprenticeship 
learning. There were 112 cases used in the validation set to 
test NEOMYCIN’s performance. A misdiagnosis produces 
a false positive and a false negative. 

Disease Num- lhe False False 
ber Posi- Posi- Nega- 
Cases tives tives tives 

Brain Abscess 7 1 2 6 
Bacterial Meningitis 16 12 31 4 
Viral Meningitis I1 4 5 7 
Fungal Meningitis 8 0 1 8 
TB Meningitis 4 1 0 3 
Cluster Headache 10 6 0 4 
Tension Headache 9 9 11 0 
Migraine Headache 10 2 0 8 
Brain Tumor 16 5 3 11 
Subarachnoid Hem. 21 9 1 12 
None 0 0 9 0 

Totals 112 49 63 63 

Table 2: Performance of NEOMYCIN after apprenticeship 
learning. This shows the results of NEOMYCIN after a 
learning by watching session using ODYSSEUS that in- 
volved watching a physician solve two medical cases. 

ment was over a wide range of cases. And the accuracy of 
diagnosing bacterial meningitis cases actually decreased. 
These counterintuitive results confirm our hypothesis that 
the power of our learning method derives from following 
the line of reasoning of a physician on individual findout 
questions, and is not sensitive to the final diagnosis as is 
the case when learning via induction from examples. 

5 Conclusions 

Apprenticeship is the most effective means for human prob- 
lem solvers to learn domain-specific problem-solving knowl- 
edge in knowledge-intensive domains. This observation 
provides motivation to give apprenticeship learning abili- 
ties to knowledge-based expert systems. The paradigmatic 
example of an apprenticeship period is medical training. 
Our research investigated apprenticeship in a medical do- 
main. 

The described research illustrates how an explicit rep- 
resentation of the strategy knowledge for a general prob- 
lem class, such as diagnosis, provides a basis for learning 
the domain-level knowledge that is specific to a particu- 
lar domain, such as medicine, in an apprenticeship set- 
ting. Our approach uses a given body of strategy knowl- 
edge that is assumed to be complete and correct, and the 
goal is to learn domain-specific knowledge. This contrasts 
with learning programs such as LEX and LP where the 
domain-specific knowledge (e.g., integration formulas) is 
completely given at the start, and the goal is to learn strat- 
egy knowledge (e.g., preconditions of operators) [Mitchell, 
et al., 19831. Two sources of power of the ODYSSEUS ap- 
proach are the method of completing failed explanations 
and the use of a confirmation theory to evaluate domain- 
knowledge changes. 

Our approach is also in contrast to the traditional in- 
duction from examples method of refining a knowledge 
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base for an expert system for heuristic classification prob- 
lems. With respect to learning certain types of heuristic 
rule knowledge, induction over examples plays a signifi- 
cant role in our work. In these cases, an apprenticeship 
approach can be viewed as a new method of biasing selec- 
tion of which knowledge is learned by induction. 

An apprenticeship learning approach, such as described 
in this paper, is perhaps the best possible bias for auto- 
matic creation of large ‘use-independent’ knowledge bases 
for expert systems. We desire to create knowledge bases 
that will support the multifaceted dimensions of exper- 
tise exhibited by some human experts, dimensions such 
as diagnosis, design, teaching, learning, explanation, and 
critiquing the behavior of another expert. 
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