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A b s t r a c t .  Combinatorial search methods often exhibit a large variabil- 
ity in performance. We study the cost profiles of combinatorial search 
procedures. Our study reveals some intriguing properties of such cost 
profiles. The distributions are often characterized by very long tails or 
"heavy tails". We will show that these distributions are best character- 
ized by a general class of distributions that have no moments (i.e., an 
infinite mean, variance, etc.). Such non-standard distributions have re- 
cently been observed in areas as diverse as economics, statistical physics, 
and geophysics. They are closely related to fractal phenomena, whose 
study was introduced by Mandelbrot. We believe this is the first find- 
ing of these distributions in a purely computational setting. We also 
show how random restarts can effectively eliminate heavy-tailed behav- 
ior, thereby dramatically improving the overall performance of a search 
procedure. 

1 Introduction 

Combinator ia l  search methods exhibit a remarkable variability in the t ime re- 
quired to solve any particular problem instance. For example,  we see significant 
differences on runs of different heuristics, runs on different problem instances, 
and, for stochastic methods,  runs with different random seeds. The inherent ex- 
ponential  nature  of the search process appears to magnify the unpredictabil i ty 
of search procedures. I t  is not uncommon to observe a combinatorial  method 
"hang" on a given instance, whereas a different heuristic, or even just  another 
stochastic run, solves the instance quickly. 

We explore the cost distribution profiles of search methods on a variety of 
problem instances. Our s tudy reveals some intriguing properties of such cost 
profiles. The distributions are often characterized by very long tails or "heavy 
tails". We will show tha t  these distributions are best captured by a general class 
of  distributions tha t  have no moments ,  i.e., they have infinite mean,  variance, 
etc. 

Carla P. Gomes works for Rome Laboratory as a Research Associate. This work was 
performed while the second author was at AT&T Laboratories, Florham Park, NJ 
07932-0971. 



122 

Heavy-tailed distributions were first introduced by the Italian-born Swiss 
economist Vilfredo Pareto in the context of income distribution. They were ex- 
tensively studied mathematically by Paul L~vy in the period between the world 
wars. L~vy worked on a class of random variables with heavy tails of this type, 
which he called stable random variables. However, at the time, these distribu- 
tions were largely considered probabilistic curiosities or pathological cases mainly 
used in counter-examples.This situation changed dramatically with Mandelbrot's 
work on fractals. In particular, two seminal papers of Mandelbrot (1960, 1963) 
were instrumental in establishing the use of stable distributions for modeling 
real-world phenomena. 

Recently, heavy-tailed distributions have been used to model phenomena in 
areas as diverse as economics, statistical physics, and geophysics. More con- 
cretely, they have been applied in stock market analysis, Brownian motion, 
wheather forecasts, earthquake prediction, and recently, for modeling time de- 
lays on the World Wide Web (e.g., Mandelbrot t983; Samorodnitsky and Taqqu 
1994). We believe our work provides the first demonstration of the suitability of 
heavy-tailed distributions in modeling the computational cost of combinatorial 
search methods. 
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Figure la: Erratic behavior of mean cost value. 

Various researchers studying the computationM nature of search problems 
have informally observed the erratic behavior of the mean and the variance 
of the search cost. This phenomenon has led them to use the median cost to 
characterize search difficulty. The heavy-tailed distributions provide a formal 
framework explaining the erratic mean and variance behavior. See Figure 1, 
for a preview of this phenomenon. Figure la shows the mean cost calculated 
over an increasing number of runs, on the same instance, of a backtrack style 
search procedure (details below). Contrast this behavior with that of the mean 
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Figure lb: Mean for a standard distribution (gamma). 

of a standard probability distribution (a gamma distribution; no heavy tails) as 
given in Figure lb. In Figure lb, we see that  the sample mean converges rapidly 
to a constant value with increasing sample size. On the other hand, the heavy- 
tailed distribution in Figure l a  shows a highly erratic behavior of the mean that  
does not stabilize with increasing sample size. 4 

As a direct practical consequence of the heavy-tailed behavior of cost distri- 
butions, we show how randomized restarts of search procedures can dramatically 
reduce the variance in the search behavior. In fact, we will demonstrate that  a 
search strategy with restarts can eliminate heavy-tailed distributions. This may 
explain the common informal use of restarts on combinatorial search problems. 

2 S t r u c t u r e d  S e a r c h  P r o b l e m s  

The study of the complexity and performance of search procedures when applied 
to realistic problems is greatly hampered by the difficulty in gathering realistic 
data. As an alternative, researchers heavily resort to randomly generated in- 
stances or highly structured problems from, e.g., finite algebra. The random 
instances clearly la~k sufficient structure, whereas the finite algebra problems 
are, in some sense, too regular. In order to bridge this gap, we introduced a new 
benchmark domain, the Quasigroup Completion Problem (Gomes and Selman 
1997a). 

A quasigroup is an ordered pair (Q, .), where Q is a set and (.) is a binary 
operation on Q such that  the equations a • x = b and y .  a = b are uniquely 
solvable for every pair of elements a, b in Q. The order N of the quasigroup 
is the cardinMity of the set Q. The best way to understand the structure of a 

4 The median, not shown here, stabilizes rather quickly at the value 1. 
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quasigroup is to consider the N by N multiplication table as defined by its binary 
operation. The constraints on a quasigroup are such that its multiplication table 
defines a Latin square. This means that in each row of the table, each element 
of the set Q occurs exactly once; similarly, in each column, each element occurs 
exactly once (Denes and KeedweI1 1974). 

An incomplete or partial latin square P is a partially filled N by N table such 
that no symbol occurs twice in a row or a column. The Quasigroup Completion 
Problem is the problem of determining whether the remaining entries of the 
table can be filled in such a way that we obtain a complete latin square, that is, 
a full multiplication table of a quasigroup. We view the pre-assigned values of 
the latin square as a perturbation to the original problem of finding an arbitrary 
latin square. Another way to look at these pre-assigned values is as a set of 
additional problem constraints on the basic structure of the quasigroup. 

There is a natural formulation of the problem as a Constraint Satisfaction 
Problem. We have a variable for each of the N 2 entries in the multiplication 
table of the quasigroup, and we use constraints to capture the requirement of 
having no repeated values in any row or column. All variables have the same 
domain, namely the set of elements Q of the quasigroup. Pre-assigned values are 
captured by fixing the vatue of some of the variables. 

Colbourn (1983) showed the quasigroup completion problem to be NP-complete. 
In previous work, we identified a clear phase transition phenomenon for the 
quasigroup completion problem (Gomes and Selman 1997a). See Figures 2 and 
3. From the figures, we observe that the costs peak roughly around the same 
ratio (approximately 42% pre-assignment) for different values of N. (Each data 
point is generated using 1,000 problem instances. The pre-assigned values were 
randomly generated.) This phase transition with the corresponding cost profile 
allows us to tune the difficulty of our problem class by varying the percentage 
of pre-assigned values. 

An interesting application area of latin squares is the design of statistical 
experiments. The purpose of latin squares is to eliminate the effect of certain 
systematic dependency among the data (Denes and Keedwell 1974). Another in- 
teresting application is in scheduling and timetabling. For example, latin squares 
are useful in determining intricate schedules involving pairwise meetings among 
the members of a group (Anderson 1985). The natural perturbation of this prob- 
lem is the problem of completing a schedule given a set pre-assigned meetings. 

The quasigroup domain has also been extensively used in the area of auto- 
mated theorem proving. In this community, the mMn interest in this domain 
has been driven by questions regarding the existence and nonexistence of quasi- 
groups with additional mathematicM properties (Fujita et al. 1993; Lam et M. 
1989). 

3 Computational Cost Profiles 

In this section, we consider the variability in search cost due to different search 
heuristics. As our basic search procedure, we use a complete backtrack-style 
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Figure 2: The Complexity of Quasigroup Completion (Log Scale). 
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Figure 3: Phase Transition for the Completion Problem. 

search method.  The performance of such procedures can vary dramatical ly  de- 
pending on the way one selects the next variable to branch on (the "variable 
selection s t ra tegy")  and in what order the possible values are assigned to a vari- 
able (the "value selection strategy") .  

One of the most  effective strategies is the so-called First-Fail heuristic. 5 In the 
First-Fail heuristic, the next variable to branch on is the one with the smallest 
remaining domain (i.e., in choosing a value for the variable during the backtrack 
search, the search procedure has the fewest possible options left to explore - -  

5 This is really a prerequisit for any reasonable backtrack-style search method. In 
theorem proving and Boolean satisfiability, the rule is related to the powerful unit- 
propagation heuristic. 
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Figure 4: Finding quasigroups of order 20 with 10~ pre-assigned values. 
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Figure 5: Finding quasigroups of order 10 at the phase transition. 

3000 

leading to the smallest branching factor). We consider a popular extension of 
the First-Fail heuristic, called the Brelaz heuristics (Brelaz 1979), which was 
originally introduced for graph coloring procedures. 

The Brelaz heuristic specifies a way for breaking ties in the First-fail rule: 
If two variables have equally small remaining domains, the Brela~ heuristic pro- 
poses to select the variable that shares constraints with the largest number of 
the remaining unassigned variables. A natural variation on this tie-breaking rule 
is what we call the "reverse Brelas" heuristic, in which preference is given to the 
variable that shares constraints with the smallest number of unassigned vari- 
ables. Any remaining ties after the (reverse) Brelaz rule are resolved randomly. 
(Note that such tie breaking introduces a stochastic element in our complete 
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search method.) One final issue left to specify in our search procedure is the or- 
der in which the values are assigned to a variable. In the standard Brelaz, value 
assignment is done in lexicographical order (i. e., systematic). In our experiments, 
we consider four strategies: 

- B r e l a z - S  - -  Brelaz with systematic value selection, 

- B r e l a z - R  - -  Brelaz with random value selection, 

- R - B r e l a z - S -  Reverse Brelaz with systematic value selection, and 

- R - b e r l a z - R  - -  Reverse Brelaz with random value selection. 

We encoded this problem in C++ using ILOG SOLVER, a powerful C++ 
constraint programming library (Puget 1994). ILOG provides a backtracking 
mechanism that allows us to keep track of variables and their domains, while 
maintaining arc-consistency (van Hentenryck e t  a l .  1992). 

Figure 4 shows the performance profile of our four strategies for an instance 
of the quasigroup completion problem of order 20 with 10% pre-assigned values, 
i . e . ,  in the underconstrained area. Each curve gives the cumulative distribu- 
tion obtained for each strategy by solving the problem 10,000 times. The cost 
(horizontal axis) is measured in number of backtracks, which is directly propor- 
tional to the total runtime of our strategies. For example, the figure shows that 
R-Brelaz-R, finished roughly 80% of the 10,000 runs in 15 backtracks or less. 

First, we note that the (cumulative) distributions have surprising long tails 
after a steep initial climb. We will return to this issue below. We also see that 
that R-Brelaz-R dominates the other strategies over almost the full range of 
the distribution. (Brelaz-S dominates very early on but the difference is not 
statistically significant.) Figure 5 shows the performance profile on an instance of 
the quasigroup completion problem in the critically constrained area. The initial 
climb followed by a long tail is even more dramatic. In this case, R-Brelaz-R and 
R-Brelaz-S give virtually the same performance, and both dominate the other 
two strategies. 

These profiles suggest that it is difficult to take advantage of combining 
different heuristics in order to reduce variability. It was our initial intention to 
build so-called algorithm portfolios to reduce variability (Huberman e t  a l .  1997 
and Gomes and Selman 1997b). However, with one strategy dominating over the 
full profile there is no clear payoff in combining different heuristics, at least in 
this domain. In fact, it may well be the case that on a given problem domain, 
one can often find a single dominating heuristic. Our study here is not meant to 
be exhaustive regarding the full spectrum of search heuristics. In particular, we 
restricted ourselves to variations on the well-known Brelaz search heuristic. 

In the next section, we concentrate on a perhaps more striking feature of 
the cost distributions: the l o n g  t a i l s .  As we will see in our section on "restarts", 
the heavy tail behavior can be exploited effectively to reduce variability in the 
search cost. 
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Figure 6a: Probability distribution exhibiting heavy-tailed behavior. 
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Figure 6b: Log-log plot of heavy-tailed behavior. 

4 Heavy-Tailed Distributions 

Figure 6a. shows the heavy-tailed nature of our cost distributions in a more direct 
manner. The probability distribution was obtained using R-Brelaz-R on an in- 
stance of the quasigroup completion problem of order 20 with 5% preplacement. 6 

s Work on exceptionally hard problems provides further support for the heavy tailed 
nature of the distributions (Gent and Walsh 1993; Smith and Grant 1995). However, 
the heavy tails we observed appear more ubiquitous: We observed heavy-tails in the 
majority of solvable instances in the under-constrained area and also in the majority 
of solvable instances in the critically constrained area. For other recent related work 
on cost distributions, see Frost et al. (1997) and Kwan (1995). 
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Figure 6c: Log-log plot of standard distributions (no heavy tails). 

We considered the distributions of over two dozen randomly picked instances 
from both the under-constrained and the critically constrained area, as well as 
some aggregate distributions. We found heavy-tailed distributions for almost all 
of our solvable instances and aggregate distributions. Some very easy solvable 
instances did not exhibit heavy tails. Interestingly, the unsolvable instances do 
not exhibit heavy-tails. The gamma and normal distributions were the best fit 
for the majori ty  of our unsolvable instances (see also Frost et al. (1997)). 

In order to model the long tail behavior of our distributions, we will consider 
distributions which asymptotically have tails of the Pareto-L~vy form, viz. 

Pr{X>x},-,C.x -~, x > O  (1) 

where a > 0 is a constant. These are distributions whose tails have a hyper- 
bolic decay. For the case which concerns us it suffices to consider this tail be- 
havior for the positive values of the random variable X. So, in what follows 
we will assume that  the distribution has support on the positive half line, i.e., 
P r{0  _< X < co} = 1. 

Mandelbrot (1983) provides an excellent introduction to these distributions 
with a discussion of their inherently self-similar or fractal nature. For a complete 
t reatment  of stable distributions see either Zolotarev (1986), or the more modern 
approach of Samorodnitsky and Taqqu (1994). See also de Lima (1997). In what 
follows, we simply outline the main results we will need to use. 

A random variable X is said to have a stable distribution if for any n > l 
there is a positive number C~ and a real number Dn such that 

Xz + X2 + . . . +  Xn -~ CnX + D , ,  (2) 
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where X1, X 2 , . . . ,  Xn are independent copies of X and ~ stands for equality in 
distribution. From this definition, it can be shown that  the following is implied 

C n  : rt l/v~ (3) 

for some 0 < a < 2 (Samorodnitsky and Taqqu 1994). The constant a is called 
the index of stability of the distribution. Stable distributions with a < 2 have 
heavy tails of the Pareto-L~vy type. The index of stability is the same c~ which 
appears in equation (1). 

Since the existence or nonexistence of moments is completely determined 
by the tail behavior, it is simple to check that  the index of stability a is the 
maximal moment exponent of the distribution. For a < 2, moments of X of 
order less than a are finite while all higher order moments are infinite, i.e., 
a = sup{a > 0 : EtXI ~ < co}. For example, when a = 1.5, the distribution only 
has a finite mean but no finite variance. When a = 0.6, the distribution does 
not have a finite mean nor a finite variance. 

While it is relatively easy to define a stable distribution, only in a few par- 
ticular cases the density of the stable distributions is known in its closed form. 

It should be noted, however, that  distributions with tails of the form (1) 
are in the domain of attraction of stable distributions, i.e., properly normalized 
sums of variables with tails of the Pareto-L~vy type converge in distribution 
to an a-stable random variable. This additive character of stable distributions 
matches the additive nature of the number of nodes searched in subtrees of the 
backtrack tree. This provides some intuition behind the suitability of the stable 
distributions for modeling search cost distributions. 

In order to check for the existence of heavy tails in our distributions, we 
proceed in two steps. First, we graphically analyze the tail behavior of the sample 
distributions. Second, we formally estimate the index of stability. 

If a Pareto-L~vy tail is observed, then the rate of decrease of the estimated 
density is h y p e r b o l i c -  i.e., slower than the exponential rate. The complement 
to one of the cumulative distribution also displays a hyperbolic decay 

1 - F(x)  = Pr {X > x} ,-~ C.x -~. (4) 

Then, for an heavy-tailed random variable, a log-log plot of the frequency of 
observed backtracks after z should show an approximate linear decrease at the 
tail. Moreover, the slope of the observed linear decrease provides an estimate of 
the index a.  In contrast, for a distribution with an exponentially decreasing tail, 
the log-log plot should show a faster-than-linear decrease of the tail. 

Since the described behavior is a property of the tail we should mainly be 
concerned with the last observations, say the 10% observations that  display a 
higher number of backtracks. 

In Figure 6b, we have plotted three empirical cumulative distributions. One 
based on the probability distribution from Figure 6a (under-constrained), an- 
other for a medium constrained (solvable) instance, and a third for a critically 
constrained (solvable) instance. The linear nature of the tails in this log-log plot 
directly reveals tails of the Pareto-L6vy type. 
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For contrast we show in Figure 6c the log-log plots of two standard probabil- 
ity distributions. We see sharp rounded drop-off of both curves - -  indicating the 
absence of heavy tails. The distributions are given by the cost profiles on two 
unsolvable instances of our quasigroup completion problem. One is a rare un- 
solvable problem in the underconstrained area (best fit: a gamma distribution), 
the other is an unsolvable instance in the critically constrained region (best fit: 
normal distribution). 

To complement our visual check of Figure 6b, and obtain an estimate of 
the index of stability (the value of c~), we use the method of Hall (1982), which 
performs a regression on the extreme tails. Let Xnl < Xn2 < . . .  < Xn,~ be 
the order statistics, i.e., the ordered values of the sample X~, X 2 . . . ,  Xn of the 
obtained number of backtracks. Set r < n as a truncation value which allows us 
to consider only the extreme observations. We obtain the estimator 

&r = r -  1 ~ log X n , n - j + l  - log X,~,, ._r (5) 
j = l  

This is a maximum likelihood estimator and Hall (1982) has established its 
asymptotic normality. Hall has also determined the optimal choice of the trun- 
cation parameter r. However, since this parameter is a function of the u n k n o w n  
parameters of the distribution, we adhere here to the common practice of using a 
set of values in the range {n/10, n/25}. This corresponds to severe truncations, 
which allow us to be more confident in our results. 

We examined over two dozen distributions, and found values for a that  are 
consistent with the infinite variance hypothesis (c~ < 2) and, in many cases, 
they point to the nonexistence of the mean (~ < 1). The estimates of ~ for the 
distributions in Figure 6b were consistent with the hypothesis of infinite vari- 
ance and infinite mean. The standard deviation in the estimates of the c~ values 
were consistently an order of magnitude smaller than the estimates themselves, 
pointing to highly significant coefficients. 

Are heavy-tailed distributions able to explain the strange sample mean dis- 
cussed in the introduction? In other words, are stable distributions with index 
of stability of the order of magnitude of those estimated, able to generate da ta  
which reproduces the pattern shown in Figure la? 

By using the method of Chambers, Mallows, and Stuck (1976), we generated 
random samples from a stable distribution, and calculated the mean as function 
of the number of samples. The resulting sequence of partial means is portrayed 
on Figure 7. The comparison between Figures l a  and 7 is striking, as the general 
wild oscillations are very similar and characteristic of heavy-tailed distributions. 

5 E x p l o i t i n g  H e a v y - T a i l e d  B e h a v i o r  

For our heavy-tailed distributions, we see that  our procedures are in some sense 
most effective early on in the search. This suggests that  a sequence of short runs 
instead of a single long run may be a more effective use of our computational 
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resources. We explore this idea by considering a fixed limit L on our overall cost 
("run time"). From the cumulative cost distribution and L, we can determine 
what our expected probability of not solving the instance is because the search 
procedure runs out of time. We can also compute this "probability of failure" 
for a procedure that quickly restarts. Figures 8a and 8b give the results of such 
an analysis. (For more detailed results on the derivations of the probability 
distributions for restarts, see Gomes and Selman, Rome Lab Technical Report, 
1997. For related work, see Gomes and Selman 1997b.) 

The analysis was done for the completion problem of an instance of order 
20 with 5% pre-placed. See distribution in Figure 6a. From Figure 8a, we see 
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Figure 8b: Log-log plot for restarts. 

that without restarts and given a total of 50 backtracks, we have a failure rate 
of around 70%. Using restarts (every 4 backtracks), this failure rate drops to 
around 10%. With an overall limit of only 150 backtracks, the restart startegy 
solves the instance almost always, whereas the original procedure still has a fail- 
ure rate of around 70%. Such a dramatic improvement due to restarts is typical 
for heavy tailed distributions - -  in particular, we get similar results on critically 
constrained instances. Finally, Figure 8b shows a clear downward curve for the 
restart strategy. This suggests that the heavy-tailed nature of the cost distribu- 
tion has disappeared. And, thus, we see that random restarts provide an effective 
mechanism for dealing with heavy-tailed cost distributions. These results explain 
the informal popularity of restart strategies in combinatorial search methods. 

6 Conclus ions  and Future Work 

We have revealed the special heavy-tMled nature of the cost distribution of com- 
binatorial search procedures. We showed how such distributions can be modeled 
as stable distributions with heavy Pareto-L6vy type tails. Our analysis explains 
the empirically observed erratic behavior of the mean and variance of the cost of 
combinatorial search. And, more generally, the high variability observed between 
runs of such procedures. 

Stable distributions have recently been used to capture a variety of real- 
world phenomena, such as stock market and wheather patterns. We believe our 
results are the first indication of the occurrance of such distributions in purely 
computational processes. We hope that our results will further stimulate research 
along these lines by employing the special statistical tools available in this area. 

We also showed how a "restart" strategy is an effective remedy against the 
heavy-tailed phenomena. Restarts drastically reduce the probability of failure 
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under limited time resources and reduce the overall variability of the method. 
Of course, when heavy tails are absent, restarts are much less effective. In our 
study, we did not encounter heavy tails for unsolvable instances. 
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