Abstract
Geometric algebra is an universal mathematical language which provides very comprehensive techniques for analyzing the complex geometric situations occurring in artificial Perception Action Cycle systems. In the geometric algebra framework such a system is both easier to analyze and to control in real time computations. This paper describes the application of rotors and motors for tasks involving the algebra of the 3D kinematics. Using purely geometric derivations and the constraints for point and line correspondences in n-views projective invariants are computed and the projective depth is discussed in terms of the generalized cross-ratio.
Preview
Unable to display preview. Download preview PDF.
References
Bayro-Corrochano, E. and Lasenby, J. 1995. Object modelling and motion analysis using Clifford algebra. In Proceedings of Europe-China Workshop on Geometric Modeling and Invariants for Computer Vision, Ed. Roger Mohr and Wu Chengke, Xi'an, China, April, pp. 143–149.
Bayro-Corrochano, E., Daniilidis, K. and Sommer, G. 1997. Hand-Eye calibration in terms of motion of lines using Geometric Algebra. In Proc. of the 10th Scandinavian Conference on Image Analysis SCIA'97, Lappeenranta, Finland, June 9–11, Vol. I, pp. 397–404.
Bayro-Corrochano E., Lasenby J., Sommer G. Geometric Algebra: A framework for computing point and line correspondences and projective structure using n uncalibrated cameras IEEE Proceedings of ICPR'96 Viena, Austria, Vol. I, pages 334–338, August, 1996.
Bayro-Corrochano E., Buchholz S., Sommer G. 1996. Selforganizing Clifford neural network IEEE ICNN'96 Washington, DC, June, pp. 120–125.
Blaschke, W. 1960. Kinematik und Quaternionen. VEB Deutscher Verlag der Wissenschaften, Berlin 1960.
Carlsson, S. 1994. The Double Algebra: and effective tool for computing invariants in computer vision. Applications of Invariance in Computer Vision, Lecture Notes in Computer Science 825; Proceedings of 2nd-joint Europe-US Workshop, Azores, October 1993. Eds. Mundy, Zisserman and Forsyth. Springer-Verlag.
Chen H. A screw motion approach to uniqueness analysis of head-eye geometry. In IEEE Conf. Computer Vision and Pattern Recognition, pages 145–151, Maui, Hawaii, June 3–6, 1991.
Chou J.C.K. and Kamel M. Finding the position and orientation of a sensor on a robot manipulator using quaternions. Intern. Journal of Robotics Research, 10(3):240–254, 1991.
Clifford, W.K. 1878. Applications of Grassmann's extensive algebra. Am. J. Math. 1: 350–358.
Clifford, W.K. 1873. Preliminary sketch of bi-quaternions. Proc. London Math. Soc., 4:381–395.
Csurka, G. and Faugeras, O. 1995. Computing three-dimensional projective invariants from a pair of images using the Grassmann-Cayley algebra. In Proceedings of Europe-China Workshop on Geometric Modeling and Invariants for Computer Vision, Ed. Roger Mohr and I/Vu Chengke, Xi'an, China, April, pp. 150–157.
Danifidis K. and Bayro-Corrochano E. The dual quaternion approach to hand-eye calibration. IEEE Proceedings of ICPR'96 Viena, Austria, Vol. I, pages 318–322, August, 1996.
Grassmann, H. 1877. Der Ort der Hamilton'schen Quaternionen in der Ausdehnungslehre. Math. Ann., 12: 375.
Hestenes, D. 1986. New Foundations for Classical Mechanics D. Reidel, Dordrecht.
Hestenes, D. 1991. The design of linear algebra and geometry. Acta Applicandae Mathematicae, 23: 65–93.
Hestenes, D. and Sobczyk, G. 1984. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. D. Reidel, Dordrecht.
Hestenes, D. and Ziegler, R. 1991. Projective geometry with Clifford algebra. Acta Applicandae Mathematicae, 23: 25–63.
Horaud R. and Dornerika F. Hand-eye calibration. Intern. Journal of Robotics Research, 14:195–210, 1995.
Lasenby, J., Fitzgerald, W.J., Lasenby, A.N. and Doran, C.J.L. 1997. New geometric methods for computer vision. To appear in International Journal of Computer Vision.
Lasenby, J., Bayro-Corrochano, E., Lasenby, A. and Sommer, G. 1996. A New Methodology for the Computation of Invariants in Computer Vision. Cambridge University Engineering Department Technical Report, CUED /F-INENG/TR.244.
Lasenby, J., Bayro-Corrochano E.J., Lasenby, A. and Sommer G. 1996. A new methodology for computing invariants in computer vision. IEEE Proceedings of ICPR'96, Viena, Austria, Vol. I, pages 393–397, August, 1996.
Lasenby, J., Bayro-Corrochano E.J.. 1997. Computing 3D projective invariants from points and lines. To appear in Int. Conference on Analysis of Images and Patterns CAIP'97, Kiel, Germany, September, 1997.
Longuet-Higgins, H.C. 1981. A computer algorithm for reconstructing a scene from two projections. Nature, 293: 133–138.
Luong, Q-T. and Faugeras, O.D. 1996. The fundamental matrix: theory, algorithms and stability analysis. IJCV, 17: 43–75.
McCarthy J.M. Dual orthogonal matrices in manipulator kinematics IJRR, Vol.5, Number 2, 1986.
Shashua, A. 1994. Projective structure from uncalibrated images: structure from motion and recognition PAMI, 16(8), 778:790.
Shiu Y.C. and Ahmad S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX = XB. IEEE Trans. Robotics and Automation, 5:16–27, 1989.
Tsai R.Y. and Lenz R.K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Rob. and Autom., 5:345–358, 1989.
Sommer G., Bayro-Corrochano E. and Bülow T. 1997. Geometric algebra as a framework for the perception-action cycle. Workshop on Theoretical Foundation of Computer Vision, Dagstuhl, March 13–19, 1996, Springer Wien.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bayro-Corrochano, E., Lasenby, J. (1997). A unified language for computer vision and robotics. In: Sommer, G., Koenderink, J.J. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 1997. Lecture Notes in Computer Science, vol 1315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017870
Download citation
DOI: https://doi.org/10.1007/BFb0017870
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63517-8
Online ISBN: 978-3-540-69589-9
eBook Packages: Springer Book Archive