Abstract
The representation of the external world in biological creatures appears to be defined in terms of geometry. This suggests that researchers should look for suitable mathematical systems with powerful geometric and algebraic characteristics. In such mathematical context the design and implementation of neural networks will be certainly more advantageous. This paper presents the generalization of feedforward neural networks in the Clifford or geometric algebra framework. The efficiency of the geometric neural nets indicate a step forward in the design of algorithms for multidimensional artificial learning.
Preview
Unable to display preview. Download preview PDF.
References
Arena P., Caponetto R., Fortuna L., Muscato G. and Xibilia M.G. 1996. Quaternionic multilayer perceptrons for chaotic time series prediction. IEICE Trans. Fundamentals. Vol. E79-A. No. 10 October, pp. 1–6.
Bayro-Corrochano E., Buchholz S., Sommer G. 1996. Selforganizing Clifford neural network IEEE ICNN'96 Washington, DC, June, pp. 120–125.
Bayro-Corrochano E., Lasenby J., Sommer G. Geometric Algebra: A framework for computing point and line correspondences and projective structure using nuncalibrated cameras IEEE Proceedings of ICPR'96 Viena, Austria, Vol. 1, pages 334–338, August, 1996.
Bayro-Corrochano E., Daniilidis K. and Sommer G. 1997. Hand-eye calibration in terms of motion of lines using Geometric Algebra. To appear in SCIA'97, June 9–11,Lappeenranta, Finland.
Cybenko G. Approximation by superposition of a sigmoidal function. Mathematics of control, signals and systems, Vol. 2, 303:314, 1989.
Doran C.J.L. 1994. Geometric algebra and its applications to mathematical physics. Ph.D. Thesis, University of Cambridge.
Georgiou G. M. and Koutsougeras C. Complex domain backpropagation. IEEE Trans. on Circuits and Systems, 330:334, 1992.
Hamilton W.R. 1853. Lectures on Quaternions. Hodges and Smith, Dublin.
Hestenes D. 1966. Space-Time Algebra. Gordon and Breach.
Hestenes D. and Sobczyk G. 1984. Clifford Algebra to Geometric Calculus: A unified language for mathematics and physics. D. Reidel, Dordrecht.
Hestenes D. 1993. Invariant body kinematics I: Saccadic and compensatory eye movements. Neural Networks, Vol. 7, 65–77.
Hestenes D. 1993. Invariant body kinematics II: Reaching and neurogeometry. Neural Networks, Vol. 7, 79–88.
Hornik K. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, Vol. 2, pp. 359–366.
Koenderink J. J. 1990. The brain a geometry engine. Psychological Research, Vol. 52, pp. 122–127.
Pearson J. K. and Bisset D.L.. 1992. Back Propagation in a Clifford Algebra. Artificial Neural Networks, 2, I. Aleksander and J. Taylor (Ed.), 413:416.
Pellionisz A. and Llinás R. 1980. Tensorial approach to the geometry of brain function: cerebellar coordination via a metric tensor. Neuroscience Vol. 5, pp. 1125–1136
Pellionisz A. and Llinás R. 1985. Tensor network theory of the metaorganization of functional geometries in th central nervous system. Neuroscience Vol. 16, No. 2, pp. 245–273.
Perantonis S. J. and Lisboa P. J. G. 1992. Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers. IEEE Trans. on Neural Networks, Vol. 3, No. 2, March, pp 241–251.
Poggio T. and Girosi F. Networks for approximation and learning. IEEE Proc., Vol. 78, No. 9, 1481:1497, Sept. 1990.
Porteous I.R. 1995. Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge.
Sommer G., Bayro-Corrochano E. and Billow T. 1997. Geometric algebra as a framework for the perception-action cycle. Workshop on Theoretical Foundation of Computer Vision, Dagstuhl, March 13–19 1996, Springer Wien.
Rumelhart D.E. and McClelland J. L.. 1986. Parallel Distributed Processing: Explorations in the Microestructure of Cognition. 2 Vols. Cambridge: MIT Press.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bayro-Corrochano, E., Buchholz, S. (1997). Geometric neural networks. In: Sommer, G., Koenderink, J.J. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 1997. Lecture Notes in Computer Science, vol 1315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017879
Download citation
DOI: https://doi.org/10.1007/BFb0017879
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63517-8
Online ISBN: 978-3-540-69589-9
eBook Packages: Springer Book Archive