Skip to main content

A final coalgebra theorem

  • Conference paper
  • First Online:
Category Theory and Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 389))

Abstract

We prove that every set-based functor on the category of classes has a final coalgebra. This result strengthens the final coalgebra theorem announced in the book “Non-well-founded Sets”, by the first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P. 1988. Non-Well-Founded Sets, CSLI Lecture Notes, Number 14, Stanford University.

    Google Scholar 

  2. Milner, R. 1983. Calculi for Synchrony and Asynchrony. Theoretical Computer Science 25:267–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David H. Pitt David E. Rydeheard Peter Dybjer Andrew M. Pitts Axel Poigné

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aczel, P., Mendler, N. (1989). A final coalgebra theorem. In: Pitt, D.H., Rydeheard, D.E., Dybjer, P., Pitts, A.M., Poigné, A. (eds) Category Theory and Computer Science. Lecture Notes in Computer Science, vol 389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018361

Download citation

  • DOI: https://doi.org/10.1007/BFb0018361

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51662-0

  • Online ISBN: 978-3-540-46740-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics