Skip to main content

On generative capacity of the Lambek calculus

  • Selected Papers
  • Conference paper
  • First Online:
Logics in AI (JELIA 1990)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 478))

Included in the following conference series:

  • 146 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Benthem, J., Essays in Logical Semantics, Studies in Linguistics and Philosophy, D. Reidel, Dordrecht, 1986.

    Google Scholar 

  2. van Benthem, J., Language in Action, Studies in Logic, North-Holland, Amsterdam, to appear.

    Google Scholar 

  3. Bar-Hillel, Y., C. Gaifman and E. Shamir, On categorial and phrase structure grammars, Bulletin Res. Council Israel, F 9, (1960), 155–166.

    Google Scholar 

  4. Buszkowski, W., W. Marciszewski and J. van Benthem (eds.), Categorial Grammar, Linguistic and Literary Studies in Eastern Europe, J. Benjamins, Amsterdam, 1988.

    Google Scholar 

  5. Buszkowski, W., The equivalence of unidirectional Lambek categorial grammars and context-free grammars, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 31, (1985), 369–384.

    Google Scholar 

  6. Buszkowski, W., Completeness results for Lambek Syntactic Calculus, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 32, (1986), 13–28.

    Google Scholar 

  7. Buszkowski, W., Generative Capacity of Nonassociative Lambek Calculus, Bulletin of Polish Academy of Sciences: Mathematics, 34, (1986), 507–516.

    Google Scholar 

  8. Buszkowski, W., Generative Power of Categorial Grammars, in: OBW(1988).

    Google Scholar 

  9. Barry, G. and G. Morrill (eds.), Studies in Categorial Grammar, Edinburgh Working Papers in Cognitive Science, University of Edinburgh, 1990.

    Google Scholar 

  10. Chomsky, N., Formal properties of grammars, in: Handbook of Mathematical Psychology, vol. 2, (R. Duncan Luce et al. eds.), Wiley, New York, 1963.

    Google Scholar 

  11. Cohen, J. M., The equivalence of two concepts of categorial grammar, Information and Control, 10, (1967), 475–484.

    Google Scholar 

  12. Kandulski, M., The equivalence of nonassociative Lambek categorial grammars and context-free grammars, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 34, (1988), 41–52.

    Google Scholar 

  13. König, E., How to fit the Lambek Calculus into the Chomsky Hierarchy, draft, Universität Stuttgart, 1990.

    Google Scholar 

  14. Lambek, J., The mathematics of sentence structure, American Mathematical Montnly, 65, (1958), 154–170.

    Google Scholar 

  15. Moortgat, M., Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus, Foris, Dordrecht, 1988.

    Google Scholar 

  16. Oehrle, R. T., E. Bach and D. Wheeler (eds.), Categorial Grammars and Natural Language Structures, Studies in Linguistics and Philosophy, D. Reidel, Dordrecht, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. van Eijck

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buszkowski, W. (1991). On generative capacity of the Lambek calculus. In: van Eijck, J. (eds) Logics in AI. JELIA 1990. Lecture Notes in Computer Science, vol 478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018438

Download citation

  • DOI: https://doi.org/10.1007/BFb0018438

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53686-4

  • Online ISBN: 978-3-540-46982-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics