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Abstract

For real symmetric eigenvalue problems, there are a number of algorithms that are

mathematically equivalent, for example, the Lanczos algorithm, the Arnoldi method

and the unpreconditioned Davidson method. The Lanczos algorithm is often preferred

because it uses signi�cantly fewer arithmetic operations per iteration. To limit the

maximum memory usage, these algorithms are often restarted. In recent years, a

number of e�ective restarting schemes have been developed for the Arnoldi method and

the Davidson method. This paper describes a simple restarting scheme for the Lanczos

algorithm. This restarted Lanczos algorithm uses as many arithmetic operations as the

original algorithm. Theoretically, this restarted Lanczos method is equivalent to the

implicitly restarted Arnoldi method and the thick-restart Davidson method. Because

it uses less arithmetic operations than the others, it is an attractive alternative for

solving symmetric eigenvalue problems.

1 Introduction

Given an n�n matrix A, its eigenvalue �� and the corresponding eigenvector x� are de�ned
by the following relation,

Ax� = ��x�:

The Lanczos algorithm for symmetric eigenvalue problems appears in many textbooks [13,
Section 9.1.2] [26] [29, Section 6.6]. It solves the eigenvalue problem by �rst building an
orthonormal basis, see Algorithm 1, then forming an approximate solution (�; x) using the
Rayleigh-Ritz projection [13, 26, 28]. It is a simple yet e�ective algorithm for �nding extreme
eigenvalues and corresponding eigenvectors. Because it only accesses the matrix through
matrix-vector multiplications, it is commonly used when the matrices are too large to store
in computer memory or not explicitly available. There are a number of algorithms that have
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Algorithm 1 The Lanczos itera-

tions starting with r0. Let �0 = kr0k,
and q0 = 0.
For i = 1; 2; : : :,

(a) qi = ri�1=kri�1k,

(b) p = Aqi,

(c) �i = qTi p,

(d) ri = p� �iqi � �i�1qi�1,

(e) �i = krik.

Algorithm 2 The Arnoldi itera-

tions starting with r0.

For i = 1; 2; : : :

(a) qi = ri�1=kri�1k,

(b) p = Aqi,

(c) hj;i = qTj p, j = 1; : : : ; i,

(d) ri = p�Pi
j=1 hj;iqj,

(e) hi;i+1 = krik.

similar characteristics, for example, the Arnoldi method, see Algorithm 2 [1, 16, 30, 36], and
the Davidson method [5, 9, 10, 18, 34, 43]. In fact, for symmetric problems, both the Arnoldi
method and the unpreconditioned Davidson method are mathematically equivalent to the
Lanczos method. However, the Lanczos algorithm uses fewer arithmetic operations per step
because it explicitly takes advantage of the symmetry of the matrix and avoids computing
dot-products that are zero. In exact arithmetic, the values of hi;j; j = 1; : : : ; i � 2, in
step (c) of Algorithm 2 are zero. The Lanczos algorithm only computes �i(� hi;i). Because
hi�1;i = hi;i�1, the Lanczos algorithm uses �i�1(� hi�1;i) in place of hi;i�1. Steps (c) and (d) of
Algorithms 1 and 2 are known as the orthogonalization steps. Clearly, the orthogonalization
step of the Lanczos algorithm is much cheaper.

When the algorithms are implemented using 
oating-point arithmetic, the expected zero
dot-products are no longer zero. This phenomenon is related to loss of orthogonality among
the Lanczos vectors. It was shown that the orthogonality level, !i;j � qTi qj, can be as
large as

p
�u, where �u is the unit round-o� error, the Lanczos algorithm will still produce

accurate eigenvalue approximations [31]. In most implementations of the Arnoldi method and
the Davidson method, full orthogonality is maintained, i.e., the orthogonality level among
the basis vectors is roughly �u. In order to maintain the desired level of orthogonality,
re-orthogonalization is commonly used. To achieve stricter orthogonality, usually more re-
orthogonalization is needed. The Lanczos algorithm is more tolerant of loss of orthogonality,
therefore it can perform less re-orthogonalization compared to other methods. These are the
additional advantages of the Lanczos algorithm.

A number of re-orthogonalization schemes are commonly used with the Lanczos algo-
rithm, for example, without re-orthogonalization [6, 7, 41, 42], with full re-orthogonalization,
with selective re-orthogonalization [23], or with partial re-orthogonalization [31]. Among
these schemes, the Lanczos method without re-orthogonalization is the simplest and it
could be implemented with the least amount of computer memory. However, it has the
drawback of producing extra copies of eigenvalues known as the spurious eigenvalues. The
Lanczos method with full re-orthogonalization can avoid spurious eigenvalues but it often
takes more time than the Lanczos methods that only maintain semi-orthogonality. Both
selective re-orthogonalization and partial re-orthogonalization maintain semi-orthogonality
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among the Lanczos vectors. The partial re-orthogonalization scheme will be used later be-
cause it is more e�ective in predicting the orthogonality level and reducing the number of
re-orthogonalizations in tests [31].

One e�ective way of using the Lanczos algorithm is to use it with a shift-and-invert
operator, i.e., replacing A with (A��I)�1 in Algorithm 1. This scheme allows one to compute
the eigenvalues near � by applying the Lanczos algorithm to compute the extreme eigenvalues
of (A� �I)�1. When � is close to the wanted eigenvalues of A, the shift-and-invert Lanczos
method is often able to �nd the solutions in a very small number of steps. This scheme is often
used to compute interior eigenvalues of A which cannot be easily computed by applying the
Lanczos algorithm on A. The shift-and-invert Lanczos method needs to apply the operator
(A� �I)�1 on the Lanczos vectors. This is usually accomplished by solving a linear system,
(A � �I)p = qi. Often these linear systems can only be solved by a direct LU factorization
based method because the solutions have to be fairly accurate. There are many cases where
the matrices are not available or the factorizations are too large to be computed or stored.
In addition, matrix factorization programs for new computing environments are sometimes
not available. Because of these reasons, the shift-and-invert scheme is only available on
some computing platforms. The Arnoldi method and the Davidson method can both take
advantage of approximate solutions to the above linear systems, in other words, they can be
preconditioned. Similar to preconditioning for linear system solutions, good preconditioners
are usually problem speci�c, and e�ective preconditioners for eigenvalue problems are not
widely available. For these reasons the Lanczos algorithm is still one of the favorite methods
for �nding eigenvalues.

Usually, the minimum number of Lanczos iterations required to compute a given eigen-
value is unknown until the eigenvalue is actually found. To control the maximum memory
needed to store the Lanczos vectors, the Lanczos algorithm is restarted. Recently, a num-
ber of successful restarting schemes have been reported, for example, the implicit restart-
ing scheme of the implicitly restarted Arnoldi method [36] and the thick-restart scheme
of the dynamic thick-restart Davidson method [37, 43]. The implicitly restarted Arnoldi
method for the symmetric eigenvalue problem is mathematically equivalent to the implic-

itly restarted Lanczos method. A commonly used implementation of the implicitly restarted
Arnoldi method is ARPACK [35]. However, in the current implementation, ARPACK does
not explicitly take advantage of the symmetry of the matrix. In this paper we will study
a restarted Lanczos method for symmetric eigenvalue problems that takes advantage of the
symmetry. Currently, the implicitly restarted Arnoldi method is the most e�ective method
for many eigenvalue problems. We believe a good restarted Lanczos method could be more
competitive by avoiding some arithmetic operations and reducing the overall solution time.

The main goal of this paper is to develop a restarted version of the Lanczos algorithm.
We are also interested in extending the partial re-orthogonalization technique to minimize
the amount of arithmetic operations and in understanding how the orthogonality of the
Lanczos vectors a�ect the accuracy of the solutions. The remainder of paper is structured as
follows: Section 2 describes the thick-restart Lanczos method appropriate for implementation
in exact arithmetic. Section 3 examines how the loss of orthogonality occurs and extends the
!-recurrence to measure the orthogonality level. Section 4 discusses when to perform global
re-orthogonalization and shows that repeating the Gram-Schmidt procedure can restore the
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orthogonality in the new Lanczos vectors even though the existing Lanczos vectors might
have considerable loss of orthogonality. Section 5 shows how the accuracy of coe�cients
�i and �i of the Lanczos algorithm are related to the orthogonality of the Lanczos vectors.
Based on these relations, we also give conditions for performing local re-orthogonalization
in the Lanczos algorithm. Section 6 shows how to evaluate a number of unknown quantities
to develop an e�ective re-orthogonalization procedure. Section 7 discusses a number of
implementation details, examines the error caused by restarting with the Ritz vectors that
are not fully orthogonal to each other, and shows the results of applying the restarted Lanczos
methods on a number of real-world problems. In Section 8, we summarize the paper, suggest
how to implement an e�ective restarted Lanczos method, and discuss possible improvements
to the current implementations used in the tests.

2 Thick-restart Lanczos iteration

In this section, we �rst review the restarting schemes used with the Arnoldi method and the
Davidson method and then describe a restarted Lanczos algorithm in exact arithmetic.

Our interest in restarted Lanczos algorithm is in large part sparked by the success of the
implicitly restarted Arnoldi method [16, 35, 36]. Eigenvalue methods like the Arnoldi method
and the Lanczos method build their basis progressively. The more steps they take, the more
basis vectors they generate. Normally, there is no way to predict how many steps is needed
for an eigenvalue to converge. Therefore, there is no way to foresee the storage requirement
needed to store the basis vectors. One simple scheme to address this concern is to restart
these methods. The restarted eigenvalue methods build their basis as usual until the given
workspace is �lled up. At which point, if the approximate solutions still need improvement,
a restarting strategy is adopted to reduce the space occupied and to make room to build
new basis vectors. Restarted methods take more matrix-vector multiplications to converge
compared to their nonrestarted counterparts. Recently developed restarting schemes have
signi�cantly increased the e�ciency of the restarted methods. However, there has not been
a restarted eigenvalue method designed speci�cally for real symmetric eigenvalue problems.
The Lanczos method is the most e�cient method for symmetric eigenvalue problems in exact
arithmetic. Thus it is a good method to restart. Let's �rst review the restarting schemes
available.

Since the Lanczos method naturally starts with one vector, see Algorithm 1, one of the
most straightforward restarting schemes is to reduce the whole basis into one vector and
start the new Lanczos iterations with it. If only one eigenvalue is needed, we can choose to
restart with the Ritz vector. If more than one eigenvalue is wanted, we may add all wanted
Ritz vectors together to form one starting vector, or use a block version of the Lanczos
algorithm that has the same block size as the number of eigenvalues wanted [28]. These
options are simple to implement but not nearly as e�ective as the more sophisticated ones
such as the implicit restarting scheme [36] and the thick-restart scheme [38, 43]. What makes
the implicit restarting scheme more e�cient are the following,

i. It retains a large portion of the basis. Through carefully arrange the algorithm, it also
avoids recomputing the projection matrix in the Rayleigh-Ritz projection.
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ii. It can restart with an arbitrary number of starting vectors.

iii. It can use arbitrary shifts to enhance the quality of the starting vectors.

The implicit restarting scheme with exact shifts, i.e., using the unwanted Ritz values as
the shifts, is equivalent to restarting with Ritz vectors for symmetric eigenvalue problems
[19, 38, 43]. There are a number of restarting schemes for the Davidson method that use
Ritz vectors [10, 20, 40]. From the reports, we see that the ability to reuse a large portion
of the previous basis greatly enhances their overall e�ciencies [19, 38, 43]. Using the exact
shifts is generally a good choice. A number of researchers have shown that the optimal shifts
are Leja points [2]. Signi�cant reduction in the number of matrix-vector multiplications
can be achieved by using Leja points as shifts when the maximum basis size is very small,
say less than 5. However, when the maximum basis size is larger than 10, using the Leja
shifts is not much di�erent from using the exact shifts in the implicitly restarted Arnoldi
method. When moderate basis size is used, we can use the Ritz vectors to restart as in the
thick-restart scheme. The thick-restart scheme has the �rst two advantages of the implicit
restarting scheme. It is simple to implement and just as e�ective as the implicit restarting
scheme in most cases [38]. Based on this observation, we will design a restarted Lanczos
method that restarts with Ritz vectors, i.e., a thick-restart Lanczos method.

Now that we have decided to use Ritz vectors to restart, we can proceed to derive the
restarted Lanczos method. Assume that the maximum number of Lanczos step can be taken
before restart is m. After m steps of Algorithm 1, the Lanczos vectors satisfy the following
Lanczos recurrence,

AQm = QmTm + �mqm+1e
T
m; (1)

where Qm = [q1; : : : ; qm], em is the last column of the identity matrix Im, and Tm = QT
mAQm

is an m�m symmetric tridiagonal matrix constructed from �i and �i as follows,

Tm =

0
BBBBBBB@

�1 �1
�1 �2 �2

. . . . . . . . .

�m�2 �m�1 �m�1
�m�1 �m

1
CCCCCCCA
:

Using the Rayleigh-Ritz projection, we can produce approximate solutions to the eigenvalue
problem. Let (�; y) be an eigenpair of Tm, then � is an approximate eigenvalue of A, and
x = Qmy is the corresponding approximate eigenvector. They are also known as the Ritz
value and the Ritz vector. The result of this approximate solution is de�ned to be Ax� �x.
For symmetric eigenvalue problems, the norm of this result is often used as the measure of
the quality of the approximation.

When restarting, we �rst determine an appropriate number of Ritz vectors to save, say
k, then choose k eigenvectors of Tm, say Y , and compute k Ritz vectors, Q̂k = QmY . The
following derivation can be carried out by assuming Y to be any orthonormal basis of a
k-dimensional invariant subspace of Tm. Since the matrix Tm is symmetric and there is
no apparent advantage to using a di�erent basis set, we will only use Ritz vectors in the
restarted Lanczos algorithm. To distinguish the quantities before and after restart, we denote
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the quantities after restart with a hat (̂ ). For example, the projected matrix Tm after restart
is T̂k � Y TTmY . Since we have chosen to restart with Ritz vectors, the matrix T̂k is diagonal
and the diagonal elements are the Ritz values. Immediately after restart, the new basis
vectors satisfy the following relation,

AQ̂k = Q̂kT̂k + �mq̂k+1s
T ; (2)

where q̂k+1 = qm+1 and s = Y T em. We recognize that this equation is an extension of
Equation 1. One crucial feature of the Lanczos recurrence is maintained here, i.e., the
residual vectors of the basis Q̂k are in one direction. In Algorithm 1, the Lanczos recurrence
is extended one column at a time by augmenting the current basis with qm+1. In the same
spirit, we can augment the basis Q̂k with q̂k+1. If there is no relation between Q̂k and q̂k+1,
we can build an augmented Krylov subspace from q̂k+1 [4, 27]. The thick-restart Arnoldi
method and the thick-restart Davidson method generate basis of the same subspace when
no preconditioning is used. These two methods are shown to be equivalent to the implicitly
restarted Arnoldi method [38, 43]. Because the Arnoldi method and the Lanczos method are
mathematically equivalent to each other, this restarted Lanczos method is also equivalent
to the implicitly restarted Arnoldi method with the exact shifts. Based on this equivalence,
the basis generated after restarting is another Krylov subspace even though we do not know
the starting vector.

To compute the new Lanczos vectors after restart we can use the Gram-Schmidt procedure
as in the Arnoldi algorithm, see Algorithm 2. Fortunately a cheaper alternative exists because
of the symmetry of the matrix. Let's �rst look at how to compute q̂k+2. Based on the Gram-
Schmidt procedure, the expression for q̂k+2 is as follows,

�̂k+1q̂k+2 = (I � Q̂k+1Q̂
T
k+1)Aq̂k+1 (3)

= (I � q̂k+1q̂
T
k+1 � Q̂kQ̂

T
k )Aq̂k+1

= (I � q̂k+1q̂
T
k+1)Aq̂k+1 � Q̂k�ms:

The above equation uses the fact that Q̂T
kAq̂k+1 = �ms, which is due to Equation 2 and the

orthogonality of the Lanczos vectors. The scalar �̂k+1 in the above equation is equal to the
norm of the right-hand side so that q̂k+2 is normalized. This equation shows that q̂k+2 can
be computed more e�ciently than a typical step of the Arnoldi method. Since the vector
Q̂T

kAq̂k+1 is known, we only need to compute �̂k+1 as in step (c) of Algorithm 1 and replace
step (d) with r̂k+1 = p̂� �̂k+1q̂k+1 �

Pk
j=1 �msj q̂j, where p̂ = Aq̂k+1. While computing q̂k+2,

we also extended the matrix T̂k by one column and one row,

T̂k+1 =

 
T̂k �ms

�ms
T �̂k+1

!
;

where �̂k+1 = q̂Tk+1Aq̂k+1. Obviously, the Lanczos recurrence relation, Equation 1, is main-

tained after restart, more speci�cally, AQ̂k+1 = Q̂k+1T̂k+1 + �̂k+1q̂k+2e
T
k+1, where �̂k+1 =

kr̂k+1k. Even though T̂k+1 is not tridiagonal as in the original Lanczos algorithm, it does not
a�ect the restarted Lanczos recurrence as we will show next.
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After we have computed q̂k+i (i > 1), to compute the next basis vector q̂k+i+1, we again
go back to the Gram-Schmidt procedure, see Equation 3,

�̂k+iq̂k+i+1 = (I � Q̂k+iQ̂
T
k+i)Aq̂k+i

= (I � q̂k+i�1q̂
T
k+i�1 � q̂k+iq̂

T
k+i � Q̂k+i�2Q̂

T
k+i�2)Aq̂k+i

= (I � q̂k+iq̂
T
k+i � q̂k+i�1q̂

T
k+i�1)Aq̂k+i � Q̂k+i�2(AQ̂k+i�2)

T q̂k+i

= Aq̂k+i � �̂k+iq̂k+i � �̂k+i�1q̂k+i�1;

where �̂k+i is q̂Tk+iAq̂k+i by de�nition and �̂k+i is the norm of the right-hand side. The
above equation is true for any i grater than 2. From this equation we see that computing
q̂k+i (i > 2) requires the same amount of work as in the original Lanczos algorithm, see
Algorithm 1. The matrix T̂k+i � Q̂T

k+iAQ̂k+i can be written as follows,

T̂k+i =

0
BBBBBBB@

T̂k �ms

�ms
T �̂k+1 �̂k+1

�̂k+1 �̂k+2 �̂k+2
. . . . . . . . .

�̂k+i�1 �̂k+i

1
CCCCCCCA
:

This restarted Lanczos iteration also maintains the recurrence relation described in Equa-
tion 1. Since the Lanczos recurrence relation is satis�ed by the restarted Lanczos algorithm,
the above equations for computing q̂k+i are not only true after restarting the initial Lanczos
iterations, they are true after every restart. The recurrence relation is a three-term recurrence
except the �rst step after restart. Therefore most of the Lanczos vectors can be computed
as e�ciently as in the original Lanczos algorithm. In addition, using the Lanczos recurrence
relation we can estimate the residual norms of the approximate eigenpairs cheaply.

The thick-restart Lanczos algorithm is basically speci�ed by the above equations. Next
we will discuss one detail concerning the storage of Tm. As mentioned before, if Y is a
collection of eigenvectors of Tm, the matrix T̂k is diagonal and the diagonal elements can be
stored as �rst k elements of �̂i, i = 1; :::; k. The array (�ms) is of size k, it can be stored in
the �rst k elements of �̂i, i = 1; :::; k. In summary, the arrays �̂i and �̂i are as follows when
restarted,

�̂i = �i; �̂i = �mym;i; i = 1; : : : ; k; (4)

where �i is the ith saved eigenvalue of Tm, the corresponding eigenvector is the ith column
of Y , and ym;i is the mth element of ith column. At restart the �rst k basis vectors satisfy
the following relation,

Aq̂i = �̂iq̂i + �̂iq̂k+1:

It is easy to arrange the algorithm so that q̂i and qi are stored in the same memory in a
computer. The hat is dropped in the following algorithm.

Algorithm 3 Restarted Lanczos iterations starting with k Ritz vectors and corresponding

residual vector rk satisfying Aqi = �iqi+�iqk+1, i = 1; : : : ; k, and qk+1 = rk=krkk. The value

k may be zero, in which case, �i and �i are uninitialized, and r0 is the initial guess.
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1. Initialization.

(a) qk+1 = rk=krkk,
(b) p = Aqk+1,

(c) �k+1 = qTk+1p,

(d) rk+1 = p� �k+1qk+1 �
Pk

i=1 �iqi,

(e) �k+1 = krk+1k,

2. Iterate. For i = k + 2; k + 3; : : :,

(a) qi = ri�1=�i�1,

(b) p = Aqi,

(c) �i = qTi p,

(d) ri = p� �iqi � �i�1qi�1,

(e) �i = krik.

The di�erence between Algorithm 1 and 3 is in the initialization step. In most imple-
mentations of Algorithm 1, the �rst iteration of the algorithm di�ers only slightly from the
subsequent steps. At the �rst iteration, step (d) is modi�ed to be r1 = p � �1q1. In Algo-
rithm 3, the di�erence between the �rst iteration and the subsequent iterations is similar,
i.e., a di�erent number of SAXPY operations are performed. It should be fairly easy to mod-
ify an existing Lanczos program based on Algorithm 1 into a restarted version. To convert
a complete eigenvalue program to use the above restarted Lanczos algorithm, the Rayleigh-
Ritz projection step needs to be modi�ed because the matrix Tm is not tridiagonal in the
above restarted Lanczos algorithm. Some of the options to deal with Tm include treating
it as a full matrix, treating it as a banded matrix, and using Givens rotations to reduce
it to a tridiagonal matrix. After deciding what to do, we can use an appropriate routine
from LAPACK or EISPACK to �nd all eigenvalues and eigenvectors of Tm. At this point, the
restarted Lanczos eigenvalue program performs convergence tests as in nonrestarted versions.

If we have not found all wanted eigenvalues, we will restart the Lanczos algorithm. The
main decision here is what Ritz pairs to save and how many. Many simple choices are
described in literatures [16, 35, 37, 38, 43]. Most of them save a number of Ritz values near
the wanted ones. For example, if we want to compute nd largest eigenvalue of a matrix, we
may choose to save k = nc +min(nd + nd; m=2) largest Ritz values, where nc is the number
of converged eigenvalues. Usually, we also require that k < m � 3. Once k is decided, we
can prepare all the necessary data to restarted Algorithm 3, QmY ! Qk, qm+1 ! qk+1 and
�i; �i; i = 1; : : : ; k can be computed from Equation 4.

3 Loss of orthogonality

In exact arithmetic, the Lanczos vectors are orthogonal to each other. When the Lanczos
algorithm is implemented in 
oating-point arithmetic, the Lanczos vectors may lose orthog-
onality after a relatively small number of steps [6, 12, 25]. If no extra work is done to
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maintain the orthogonality, extraneous copies of eigenvalues will be computed by the Lanc-
zos eigenvalue method [6, 41, 42]. To avoid the spurious solutions and manage the loss of
orthogonality, there are a number of schemes to predict the orthogonality level, determine
what orthogonality level can be tolerated, and recover the orthogonality when severe loss of
orthogonality is detected. Without restart, the Lanczos vectors will lose their orthogonality
when some eigenvalues reach convergence [22, 25]. In this case, if the orthogonality level is
less than

p
�u, the computed eigenvalues are as accurate as if the Lanczos vectors are accu-

rately orthogonal [31, 32, 33]. There are a number of software packages that take advantage
of this fact to reduce arithmetic operations [14] [15, Section 10.6] [17] [26]. In the next three
sections, we will discuss similar issues for the restarted Lanczos algorithm. In particular,
this section will extend the !-recurrence to monitor the loss of orthogonality [31]. In the
next two sections, we will discuss how to maintain the desired level of orthogonality among
the Lanczos vectors.

The errors that contribute to the loss of orthogonality can be roughly separated into
two parts, the local round-o� errors of orthogonalization step (2.d) and the global error
propagated through the !-recurrence [14, 31, 32]. In this section, we will �rst analyze the
round-o� errors of local orthogonalization, speci�cally, the error of evaluating step (2.d) of
Algorithm 3, then derive the !-recurrence to capture the propagation of error in the restarted
Lanczos algorithm.

Before discussing the local loss of orthogonality, let's de�ne a few quantities that will be
used. Following the notation of partial re-orthogonalization [14, 31], let !i;j � qTi qj. If the
Lanczos vectors are computed using exact arithmetic, !i;j, i 6= j, are zero. If the vectors are
computed using 
oating-point arithmetic, !i;j; i 6= j; will not be exactly zero. Estimating
the values of !i;j is the objective of the !-recurrence. The orthogonality level of the Lanczos
recurrence is �q if the following is true,

!i;j < �q; i 6= j: (5)

We say that full orthogonality is maintained if �q = �u
p
n. The Lanczos basis is semi-

orthogonal if �q �
p
�u. The following analyses are valid with �q =

p
�u. In fact, if we use

semi-orthogonality with a speci�c orthogonality level, the orthogonality level is assumed to bep
�u. There are certain advantages to using a smaller �q. For example, using �q = 10�4

p
�u

was shown to minimize the time needed to solve some linear systems using the Lanczos
method [31].

In the regular Lanczos method, see Algorithm 1, qi+1 is computed from Aqi by orthog-
onalizing it against qi and qi�1. The vector norm before orthogonalization is kAqik =q
�2
i + �2

i�1 + �2
i . The vector is named ri after the orthogonalization, ri = Aqi � �iqi �

�i�1qi�1. We de�ne �i and qi+1 as follows

�i = krik; qi+1 = ri=�i:

When the above computations are carried out in 
oating-point arithmetic, �i and qi+1 are
not computed exactly. We denote their error by di, i.e., di = Aqi � �iqi � �i�1qi�1 � �iqi+1.
Later we will show that �i, �i�1 are computed accurately. Assuming Aqi, qi, and qi�1 are
accurate, the size of di can be bounded as follows,

kdik � �u kAqi + �iqi + �i�1qi�1k
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� 3�u(
q
�2
i + �2

i�1 + �2
i + j�ij+ �i�1): (6)

The above formula is a rough estimate of the local round-o� error di. The actual error can
be larger because Aqi, qi, and qi�1 are not accurate in actual computations. We usually
don't know the error in computing Aqi because the matrix-vector multiplication may be
implemented in any form. The Lanczos vectors are not accurate since we only maintain
semi-orthogonality. Even though the above error bound is not reliable, we will see later that
it does not signi�cantly a�ect the estimate orthogonality level because local round-o� errors
are relatively small. In fact, in many implementations of partial re-orthogonalization, the
local round-o� errors are ignored [14, 31].

In preparation to extend the !-recurrence to the restarted Lanczos iterations, we list the
Lanczos recurrence with local round-o� errors for the restarted Lanczos algorithm [14, 31].

Aqi = �iqi + �iqk+1 + di; (i � k); (7)

Aqk+1 = �k+1qk+1 +
kX

j=1

�jqj + �k+1qk+2 + dk+1; (8)

Aqi = �iqi + �i�1qi�1 + �iqi+1 + di; (i > k + 1): (9)

The process of evaluating !i;j = qTi qj for restarted Lanczos algorithm closely follows the
process used to derived the !-recurrence for non-restarted Lanczos algorithm [14, 31]. The
computation of qk+2 at step (1.d) of Algorithm 3 is a full Gram-Schmidt procedure, see also
Equations 3 and 8. The loss of orthogonality in qk+2 is treated as a special case in the coming
section. This section will discuss the orthogonality level of qi(i > k + 2). Using the identity
qTj Aqi = qTi Aqj, we can derive the following recurrence for the restarted Lanczos iteration
for the (i+ 1)st row of Wm for i > k + 2,

�i!i+1;j = (�j � �i)!i;j + �j!i;k+1 � �i�1!i�1;j + dTj qi � qTj di; (j � k); (10)

�i!i+1;k+1 = (�i � �k+1)!i;k+1 +
kX

j=1

�j!i;j + �k+1!i;k+2 � �i�1!i�1;k+1

+dTk+1qi � qTk+1di; (11)

�i!i+1;j = (�j � �i)!i;j + �j!i;j+1 + �j�1!i;j�1 � �i�1!i�1;j + dTj qi � qTj di;

(k + 1 < j < i� 1); (12)

�i!i+1;i�1 = (�i�1 � �i)!i;i�1 + �i�2!i;i�2 + �i(!i;i � !i�1;i�1) + dTi�1qi � qTi�1di (13)

�i!i+1;i = �i(1� !i;i)� �i�1!i;i�1 + qTi di: (14)

Equation 14 is directly obtained by multiplying qTi on both sides of Equation 9 from the left.
In the above equations, we have used the fact that !i;j = !j;i to rearrange the expressions
so that the new row of W can be computed from two previous rows. The above equations
contain di on the right-hand sides. Since di is an unknown vector, we will need to estimate
it value in practice. For the convenience of theoretical discussion we assume !i;j can be
evaluated accurately. We will discuss how to properly estimate !i;j in section 6.

The !-recurrence simulates the loss of orthogonality in the Lanczos iterations. With it,
we can extend the partial re-orthogonalization scheme to the restarted Lanczos algorithm.
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Before discussing the details of the partial re-orthogonalization scheme, we introduce a few
more notations that will be used later.

After m steps of the Lanczos iterations, let Lm be the Cholesky factor of Wm and Nm be
an orthonormal basis of column space of Qm de�ned as follows, Nm = QmL

�T
m , where L�Tm

is the inverse of LT
m. Let ~Lm = Lm � I, because the diagonal elements of Wm are one by

construction, we have the following,

Wm = LmL
T
m = (~Lm + I)(~Lm + I) = ~Lm

~LT
m + ~Lm + ~LT

m + I

� ~Lm + ~LT
m + I:

This shows that the o�-diagonal elements of the Cholesky factor Lm are approximately the
o�-diagonal elements of Wm and the diagonal elements are approximately one,

li;j � !i;j; j < i: (15)

It is easy to see that the error in this approximation is ~Lm
~LT
m. This leads to a second-order

approximation of li;j as follows,

li;j � !i;j �
X
p<j

!i;p!j;p j < i; (16)

li;i � 1� 1

2

X
j<i

!2
i;j: (17)

Without restarting, Nm should be exactly what would be computed had the Lanczos
iterations been carried out in exact arithmetic. The above decomposition of Wm and Equa-
tions 15 { 17 facilitate the study of re-orthogonalization criteria. Depending on how many
vectors are involved in the process, we will de�ne two re-orthogonalization schemes, the global
re-orthogonalization and the local re-orthogonalization. The global re-orthogonalization
scheme explicitly orthogonalizes ri against all previous Lanczos vectors using the Gram-
Schmidt procedure. The local re-orthogonalization scheme only orthogonalizes ri against
qi and qi�1. Because the global re-orthogonalization contains the operations performed in
the local re-orthogonalization, we will discuss the condition for global re-orthogonalization
�rst. Our orthogonalization criteria are established to guarantee accurate �i and �i as in
the non-restarted version [31].

4 Global re-orthogonalization

In this section, we give the criteria for performing global re-orthogonalization, show that re-
peating the Gram-Schmidt procedure can restore the orthogonality, and establish a termina-
tion criterion for stopping the repetition. Similar to what is done in partial re-orthogonalization,
the global re-orthogonalization is applying the Gram-Schmidt procedure to make sure the
new Lanczos vector is orthogonal to all existing Lanczos vectors. Our criteria for performing
global re-orthogonalization ensure that the norms of the residual vectors ri are computed
accurately. To achieve this, we use 2-norm rather than the in�nity norm as in previous
partial re-orthogonalization implementations [14, 31]. The study of how the Gram-Schmidt
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procedure restores orthogonality also clari�es the criteria for performing re-orthogonalization
for the Arnoldi method and the Davidson method [8, 10, 16, 30, 39].

In the normal iterations of Algorithm 3, the orthogonality level of qi+1 (i > k + 1) can
be computed after step (2.e) using Equations 10 { 14. We use !i+1;j to decide whether to
perform global re-orthogonalization. Using the de�nitions of Li+1 and Ni+1, the vector qi+1
is the following linear combination of the exact Lanczos vectors, qi+1 =

P
j�i+1 li+1;jnj, and

similarly, ri = �i
P

j�i+1 li+1;jnj. If ri is computed exactly, it should be parallel to ni+1. The
error in rTi ri due to loss of orthogonality is �

2
i

P
j�i l

2
i+1;j. IfX

j�i

l2i+1;j � �u; (18)

then the norm of ri would be the same as if li+1;j; j = 1; : : : ; i are zero. Since �i is taken to be
the norm of ri,

P
j�i+1 l

2
i+1;j must be one. If

P
j�i l

2
i+1;j � �u, li+1;i+1 is indistinguishable from

one in 
oating-point arithmetic. There are a number of cases where Equation 18 guarantees
the norm of ri can be computed accurately. Since ri = Aqi � �iqi � �i�1qi�1(i > k + 1), the
following is true,

�i = nTi+1ri = nTi+1Aqi = (Ani+1)
T qi:

The above equation uses the fact that nTi qj = 0; i > j. The same orthogonality relation
also hold for i = k + 1. Assuming there is an exact Lanczos algorithm such that Ani+1 =
��i+1ni+1 + ��i ni + ��i+1ni+2(i > k), where ��i = nTi Ani and ��i = kAni � ��ini � ��i�1ni�1k,
we will have �i = ��i n

T
i qi = ��i li;i. Without restarting, the implicit Q theorem guarantees

that Nm is the same as the Lanczos vectors computed to full accuracy. Therefore the above
assumption is satis�ed. If Equation 2 is satis�ed accurately, it is easy to see that Nm should
be the same as if the restarted Lanczos algorithm is carried out to full accuracy. In both
cases, satisfying Equation 18 ensures that the norm of ri can be computed accurately.

Based on the above observation, we suggest performing global re-orthogonalization ifP
j�i l

2
i+1;j > �u. Since the !-recurrence does not directly produce li;j, we use Equation 15 to

restate this condition as follows,

kwi+1k2 =
vuut iX

j=1

!2
i+1;j > �q; (19)

To ensure the error in the norm of ri is computed accurately we need to have �q �
p
�u.

Typically, we the Gram-Schmidt procedure to perform the global re-orthogonalization, ri =
(I � QiQ

T
i )ri, and we assume qi+1 is accurately orthogonal to all previous Lanczos vectors

afterward [14] [15, Section 10.6] [17, 31]. To ensure the orthogonality is fully restored, often
the re-orthogonalization routine allows the Gram-Schmidt procedure to be applied more
than once. The e�ectiveness of this scheme has been studied in the case of QR factorization
where full orthogonality is desired [8]. The remainder of this section will show that the
Gram-Schmidt procedure is e�ective even when the existing basis Qi is semi-orthogonal.

Let's orthogonalize an arbitrary vector z against a semi-orthogonal basis Qi, the result of
the �rst Gram-Schmidt orthogonalization is z(1) = (I �QiQ

T
i )z. The dot-products between

Qi and the new vector are as follows,

w(1)
z � QT

i z(1) = (I �QT
i Qi)Q

T
i z = (I �Wi)Q

T
i z:
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If we repeat the orthogonalization procedure, i.e., computing z(2) as follows, z(2) = (I �
QiQ

T
i )z(1), then the dot-products between Qi and z(2) is

w(2)
z � QT

i z(2) = (I �Wi)Q
T
i z(1) = (I �Wi)w

(1)
z :

More generally, let z(0) � z and z(j+1) = (I�QiQ
T
i )z(j), we know the following equations are

true,

QT
i z(j+1) = (I �Wi)Q

T
i z(j);

kw(j+1)
z k � kI �Wikkw(j)

z k: (20)

When the basis Qi is semi-orthogonal, the eigenvalues of (I �Wi) can be bounded by �i�q
using Gershgorin Theorem [13, Theorem 7.2.1]. The spectral radius � = kI�Wik is bounded
by i�q. Usually, this spectral radius is much smaller than one (i � 1=�q), which indicates
that the sequence w(j)

z , j = 0; 1; : : :, converges to zero. Denote the limit of z(j) by z?. It is
relatively straightforward to evaluate the value of z?.

By repeating the Gram-Schmidt procedure, we are essentially computing z? by the fol-
lowing summation,

z? = z +
1X
j=0

(z(j+1) � z(j)):

It can be reformulated using z(j+1)� z(j) = �QiQ
T
i z(j) = �Qi(I�Wi)

iQT
i z(0) and

P
1

i=0A
i =

(I � A)�1,

z? = z �Qi

 
1X
i=0

(I �Wi)
i

!
QT

i z

= z �Qi(I � (I �Wi))
�1QT

i z

= (I �NiL
T
i (LiL

T
i )
�1LiN

T
i )z

= (I �NiN
T
i )z: (21)

This equation shows that the ultimate result of repeatedly orthogonalizing against a semi-
orthogonal basis Qi leads to the same answer as orthogonalizing against an orthogonal basis
of Qi. This means that repeatedly applying the Gram-Schmidt procedure on ri can compute
it to full accuracy. If the Lanczos recurrence starts with one initial vector, the implicit Q
theorem guarantees that after re-orthogonalization, ri is the same as if all previous Lanczos
vectors were computed accurately. When there is more than one starting vector, as in
the thick-restart Lanczos iterations, repeating the Gram-Schmidt procedure will still make
sure that ri is accurately orthogonal to all current basis vectors. However, after global re-
orthogonalization, it is not clear whether the vector ri is the same as if we had computed all
the basis vectors accurately. We will show that maintaining semi-orthogonality is enough to
produce accurate solutions in section 7.

The derivation of Equation 21 is based on repeating the Gram-Schmidt procedure forever.
In practice a small number of iterations are enough. Next we will study when to terminate
the global re-orthogonalization process. The goal of global re-orthogonalization is to make
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sure qi+1 is fully orthogonal to Qi. Since the orthogonalization is directly applied on ri
(qi+1 = ri=krik), we de�ne the error measure as:

w(j)
z =kz?k � Qiz(j)=kz?k = (I �Wi)

jQT
i z(0)=kz?k = (I �Wi)

jw(0)
z =kz?k:

If kw(0)
z k=kz?k is large, that is, the input vector z is almost a linear combination of Qi, more

iterations will be required. For convenience of discussion, let's denote the ratio kw(0)
z k=kz?k

as �. Usually, we can assume that � is not larger than 1=�u. The round-o� errors of 
oating-
point operations to compute QiQ

T
i z(0) can be as large as �ukw(0)

z k, if kz?k happens to be
smaller than �ukw(0)

z k, the round-o� errors will dominate z(1). In this case, z(i) does not
converge to z?, even though z(i) is perpendicular to the existing basis. The error di in
Equation 9 is on the round-o� error level, i.e., Equation 6 may still be true. However,
krik is no longer �i. In practice, we set �i to zero if the norm of ri is very small, e.g.,

krik < �u
q
n(�2

i + �2
i�1). There are two cases where the round-o� error will not overtake

z?, if the actual round-o� error happens to be much smaller than the estimate value given
above, or the round-o� error lies in the column space of Qi. In these cases, the Gram-
Schmidt procedure may be repeated up to four times. If more re-orthogonalization is needed,
we declare that the current ri is a zero vector and we may choose either to terminate the
Lanczos algorithm or continue with a di�erent starting vector.

When orthogonality of Qi is maintained to full accuracy, say, �q = �u
p
n, � = i�u

p
n, two

Gram-Schmidt iterations should achieve full orthogonality in most cases,

kw(2)
z k=kz?k < i2n�2u� < i2n�u (� < 1=�u):

This con�rms the observations made previously [8].
When only semi-orthogonality is maintained, z(j) still converges to z?. However, it con-

verges more slowly because of larger �, � � i�q. Given the same vector z, about twice
as many steps may be required in order to achieve the same accuracy. If � is 1=�u, four
orthogonalization iterations may be needed to achieve full accuracy,

kw(4)
z k=kz?k < i4�2u� = i4�u; (�q =

p
�u):

In some implementations of the Lanczos algorithm with re-orthogonalization, e.g., [14]
[31], when it is necessary to perform global re-orthogonalization on ri, global re-orthogonalization
is also performed on qi. This is done to make sure that the future Lanczos vectors are com-
puted from accurate starting vectors. We will adopt the same strategy. However, we may
save arithmetic operations by performing di�erent numbers of Gram-Schmidt iterations on
the two vectors. Since qi is semi-orthogonal, applying the Gram-Schmidt procedure once is
enough to make it fully orthogonal to previous Lanczos vectors. In addition, there is no need
to re-evaluate �i�1. To make ri fully orthogonal to Qi, more iterations might be needed. The
above analysis shows that four iterations should be enough for most cases, but four iterations
of the Gram-Schmidt procedure require a signi�cant amount of arithmetic operations. In
actual implementations, we need to determine when to terminate the orthogonalization loop
dynamically. The loss of orthogonality after j Gram-Schmidt iterations is kw(j+1)

z k=kz?k,
which can be approximated as, kw(j+1)

z k=kz?k � kI �Wikkw(j)
z k=kz(j+1)k. If the following

condition is true,
kI �Wikkw(j)

z k=kz(j+1)k > �u
p
n; (22)
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then the Gram-Schmidt procedure is repeated. In this test, the norm of w(j)
z is cheap to

compute, but computing the norm of z(j+1) requires a global sum operation on parallel
computers, which might be expensive. However, when z is ri, it is generally necessary to
recompute the norm of ri to update the value of �i. Thus the above error estimate can be
computed with almost no extra operations.

If the Gram-Schmidt procedure has been applied more than four times, we regard the
vector ri as a zero vector. If not enough eigenvalues have been computed, then the Lanczos
iteration can be continued by setting �i to zero and replacing qi+1 with an arbitrary unit
vector that is orthogonal to Qi.

After a global re-orthogonalization, the loss of orthogonality is assumed to be �u
p
n as

in most implementations of the partial re-orthogonalization scheme [14, 31].
Equation 19 is only applicable to the regular iterations of Algorithm 3. When computing

qk+2, it is clear that !k+2;j cannot be computed using only the last two rows of Wk+1.
In addition, the local re-orthogonalization and global re-orthogonalization are identical at
this stage of the Algorithm. Instead of using Equation 19 as the criterion for global re-
orthogonalization, we need to derive a criterion based on Equation 22. The condition we use
is,

�kQT
k+1z(j�1)k > �u

p
nkz(j)k; (� = kI �Wk+1k) (23)

where z(0) = rk+1. When the basis Qk+1 is maintained to full orthogonality, the above
inequality is often approximated as [8, 16, 35],

kQT z(j�1)k > kz(j)k: (24)

We have dropped the subscript to Q to indicate that it can be an arbitrary size. The
underlying assumption of this test is that � = �u

p
n, which is roughly true if the basis size

is relatively small.
If full orthogonality is desired, we suggest only using global re-orthogonalization. In this

case, there is no need to evaluate the !-recurrence and the previous re-orthogonalization
criterion can be simpli�ed as follows,

q
�2
i + �2

i�1 � krik: (25)

We may still use Equation 24 to decide whether to stop the global re-orthogonalization.

5 Local re-orthogonalization

We will now consider the condition for performing local re-orthogonalization in the cases
where global re-orthogonalization is not needed. Based on the results of previous studies
[24], our local re-orthogonalization will repeat step (2.d) of algorithm 3, i.e., orthogonalizing
ri against both qi and qI�1. To establish the criteria for local re-orthogonalization, we
will start by looking at the formulas for computed �i and �i. When semi-orthogonality is
maintained, it was shown that the errors in �i and �i are on the order of �ukAk without
restart [31, 32]. In this section we will demonstrate when the same is true for restarted
Lanczos algorithm.

15



Since the global re-orthogonalization is not necessary, i.e.,
P

j�i !
2
i+1;j � �u, the diagonal

element of Li+1 should be accurately one. Using this fact, we can write qi as,

qi = ni +
X
j<i

li;jnj: (26)

The computed �i is given by the following formula,

�i = (ni +
X
j<i

li;jnj)
TA(ni +

X
j<i

li;jnj);

= nTi Ani + 2nTi A
X
j<i

li;jnj + (
X
j<i

li;jnj)
TA(

X
j<i

li;jnj)

= ��i + 2li;i�1�
�

i�1 +
i�1X
j=1

��j l
2
i;j +

2
kX

j=1

��j li;jli;k+1 + 2
i�2X

j=k+1

��j li;j�1li;j:

This derivation uses the fact that i > k+1. The quantities ��i and ��i are exact values of the
computed �i and �i, i.e., �

�

i = nTi Ani and ��i = kAni���ini���i�1ni�1k. To reduce the error
in �i we need to �rst reduce the size of 2li;i�1�

�

i�1 because all other error terms are much
smaller. Using Equation 16, we see that li;i�1 � !i;i�1 �

P
j<i�1 !i;j!i�1;j. This shows that

in order to reduce the error in �i, we need to make sure !i;i�1 is small. When computing �i

at step (2.c) of Algorithm 3, we have computed qi already. At this point of the algorithm,
in order to reduce !i;i�1, we would have to recompute qi which means another matrix-vector
multiplication is needed to re-evaluate �i. One alternative to this scheme is to make sure
ri�1 is orthogonal to qi�1 which can be done by local re-orthogonalization.

To establish the condition for local re-orthogonalization, we evaluate !i+1;i using Equa-
tion 14 after step (2.e) of Algorithm 3. Assuming that qTi di is negligible, !i+1;i can be
approximated as !i+1;i = ��i�1!i;i�1=�i. If �i�1=�i > 1, than !i+1;i would be larger than
!i;i�1. We will orthogonalize ri against qi if the following is true,

�i�1 > �i: (27)

Using Equation 26 and step (2.e) of Algorithm 3, we can express ri and qi+1 as,

ri = �i(ni+1 +
X
j�i

li+1;jnj); qi+1 = ni+1 +
X
j�i

li+1;jnj:

Let r
(1)
i be the residual vector after local re-orthogonalization, i.e., r

(1)
i = ri � qiq

T
i ri. It is

easy to show the following,

r
(1)
i = �i

0
@ni+1 + (li+1;i � !i+1;i)ni +

X
j<i

(li+1;j � !i+1;ili;j)nj

1
A :

The orthogonality between qi and q
(1)
i+1 � r

(1)
i =kr(1)i k is

qTi q
(1)
i+1 = li+1;i � !i+1;i +

X
j<i

(li+1;j � !i+1;jli;j)li;j = �!i+1;i
X
j<i

li;jli;j:
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The above derivation uses the fact that !i+1;i = li+1;i+
P

j<i li+1;jli;j. If semi-orthogonality is
maintained,

P
j<i li+1;jli;j � 1

2
(
P

j<i l
2
i+1;j+

P
j < il2i;j) � 1

2
(
P

j�i !
2
i+1;j+

P
j < i!2

i;j) < �2q. It
shows that after orthogonalizing against qi only once, the vector ri is fully orthogonal to qi.
There is no need to repeat the orthogonalization against qi. After this local orthogonalization,
we set wi+1;i to �u

p
n as in previous implementations of the !-recurrence [14, 31]. The loss

of orthogonality of q
(1)
i+1 against other Lanczos vectors is

qTj q
(1)
i+1 = !i+1;j � !i+1;il

2
i+1;j; j < i:

Since the changes are small for !i+1;j; j < i, we choose not to modify them. Another point
to note is that after orthogonalizing against qi, there is no need to recompute �i because the
dot-product rTi ri cannot be computed accurately enough to capture the change.

After one local re-orthogonalization, ri is accurately orthogonal to qi. The limitation on
the actual value of !i+1;i is the round-o� error of computing ri. Assuming !i+1;i = �u

p
n,

the error in �i+1 due to loss of orthogonality is 2�i�u
p
n. The round-o� error in the dot-

product operation used to compute �i+1 is bounded by n�ujqi+1jT jAqi+1j [13, Section 2.4.5].
If �i is not signi�cantly larger than the magnitude of �i+1, then the error caused by loss of
orthogonality would be no larger than the round-o� error of computing �i+1.

There are many ways to implement the Lanczos algorithm [21, 26]. In particular, there
are at least two ways of computing �i. One is to use �i = krik as in Algorithm 3. The other
is to compute �i as a coe�cient of Gram-Schmidt orthogonalization, �i = qTi Aqi+1. The
�rst formula computes the sub-diagonal elements (hi;i+1) of Tm = QT

mAQm, and the second
formula computes the super-diagonal elements (hi+1;i) of Tm, see Algorithm 2. The matrix
Tm is symmetric because A is symmetric. In order to maintain the symmetry of the matrix
Tm, the �i values computed from the two formulas should be the same. To distinguish the
two �i values, we de�ne �

(�)
i = krik and �(+)

i = qTi Aqi+1. Because the matrix A is symmetric
and Aqi = �iqi + �i�1qi�1 + �iqi+1, we can establish the following relation between the two
values,

�
(+)
i = �i!i+1;i + �i�1!i+1;i�1 + �

(�)
i !i+1;i+1:

The value of !i+1;i+1 is one if semi-orthogonality is maintained. The di�erence between the
two �i values is

�
(+)
i � �

(�)
i = �i!i+1;i + �i�1!i+1;i�1:

This shows that both !i+1;i and !i+1;i�1 have to be small in order to maintain symmetry
of the computed Tm [24]. In some implementations, local re-orthogonalization only orthog-
onalizes ri against qi [14]. Extended local re-orthogonalization [24, 26] [15, Section 10.6],
i.e., orthogonalizing ri against both qi and qi�1, is clearly important to a successful imple-
mentation of the Lanczos method. We choose to orthogonalize ri against qi and qi�1 if the
following is true,

j�i!i+1;ij+ j�i�1!i+1;i�1j > �unkrik: (28)

The right-hand side of the above inequality is the round-o� error of computing the norm
of ri [13, Section 2.4.5]. If the di�erence between two versions of �i is large enough to be
computed in the formula �i = krik, then the extended local re-orthogonalization should be
performed. We have shown that orthogonalizing ri against qi reduces !i+1;i to below �u.
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Similarly, orthogonalizing ri against qi�1 should reduce !i+1;i�1 below �u as well. In both
case, applying the Gram-Schmidt procedure once is enough.

The goal of this criterion is to ensure the projected matrix Tm is symmetric to the
full precision. In other words, we want to compute �i to full precision of 
oating-point
arithmetic. After the extended local re-orthogonalization, if the norm of ri is not much
smaller than �i and �i�1, then �i is exactly the norm of ri. If the norm of ri is very small
compared to �i or �i�1, then the local re-orthogonalization is needed to reduce the size of
!i+1;i and !i+1;i�1. Based on previous experience, we set �i to zero if the following is true,

krik < �u
q
n(�2

i + �2
i�1).

In most cases, the di�erence between �
(+)
i and �

(�)
i is an overestimate of the error in �i

computed using �i = krik. When discussing the global re-orthogonalization criteria, we have
pointed out two cases where our criteria should ensure that the norm of ri can be computed
accurately. This also partly explains why the formula �i = krik is favored over �i = qTi Aqi+1
in most implementations of the Lanczos algorithm [14] [15, Section 10.6] [17, 31].

The above local re-orthogonalization criteria, Equations 27 and 28, are based on the
assumption thatNm are exact Lanczos vectors. Assuming that the Lanczos method is started
with a nontrivial vector at the beginning, then Equation 2 is satis�ed accurately at every
restart. The restarted Lanczos algorithm with above global and local re-orthogonalization
schemes should generate accurate �i; �i; i = k+2; : : : ; m. Therefore it also generates accurate
eigenvalue approximations.

Equation 2 can be satis�ed to di�erent accuracies depending on how the Lanczos algo-
rithm is actually implemented. The most straightforward implementation is to apply the
full re-orthogonalization using the criterion described in Equation 15. As we have argued
before, to maintain full orthogonality, a signi�cant amount of re-orthogonalization work is
required. On the other hand, the partial re-orthogonalization with the above global and
local re-orthogonalization criteria may not be able to guarantee accurate solutions. We may
need to perform additional orthogonalization in order to compute accurate eigenvalues.

Normally, the Lanczos iterations are started with one initial vector. Before the �rst
restart, there is an orthonormal basis Nm, such that the Lanczos recurrence, Equation 1, is
satis�ed accurately [31],

ANm = NmTm + �mnm+1e
T
m (29)

Through the analysis in section 4, we know that nm+1 can be computed accurately without
�rst computing Nm. This can be achieved by applying global re-orthogonalization on rm.
After the re-orthogonalization, the above equation can be replaced with ANm = NmTm +
�mqm+1e

T
m. At restart, we set T̂k = Y TTmY , where Y consists of k selected eigenvectors

of Tm. The corresponding Lanczos vectors should be Q̂�k = NmY . We can compute Q̂�k by
explicitly computing Wm = QT

mQm and perform Cholesky factorization on Wm, after which,
the new starting Lanczos vectors can be computed as

Q̂�k = QmL
�T
m Y:

We may choose to �rst evaluate L�Tm Y then perform the linear combination operation. This
process correctly restores the orthogonality of the starting vectors Q̂k. If we have computed
qm+1 to full accuracy, then Equation 2 is satis�ed accurately. If k � n, the costs of Cholesky
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name N NNZ description
NASASRB 54870 2677324 shuttle rocket booster structure from NASA
S3DKT3M2 90449 3753461 cylindrical shell, uniform triangular mesh
S3DKQ4M2 90449 4820891 cylindrical shell, quadratic elements

Table 1: Information about the test matrices used.

factorization and the triangular solution are relatively small. The main cost of this cor-
rection scheme is in computing Wm. Since computing Wm is roughly half as expensive as
performing global re-orthogonalization for every Lanczos vector, for many eigenvalue prob-
lems using partial re-orthogonalization with this correction scheme might be more e�cient
than maintaining full orthogonality by performing global re-orthogonalization at every step.

In the above correction scheme, one of the steps is to make sure rm is fully orthogonal to
the existing Lanczos vectors. This generates an orthogonal residual vector for the Lanczos
iterations rather than a semi-orthogonal residual vector. Making this vector as accurate
as possible is important because after restarting the new vectors are computed from this
one. Orthogonalizing only rm does not guarantee the accuracy of Equation 2. However,
because the new vectors are computed from an accurate starting vector, loss of orthogonality
before restart is not ampli�ed after the restart. Figure 1 shows the comparison of the
orthogonality of the bases computed with and without orthogonalizing rm. In both examples,
the orthogonality of the bases with orthogonal residual vectors are almost constant, but the
orthogonality of the bases with semi-orthogonal residual vectors increases quickly as more
restarts are used. It is clear from this small experiment that maintaining an orthogonal
residual when restarting is e�ective in reducing error propagation.

If the relation described in Equation 2 is not satis�ed, we can implement the algorithm
by �rst generating the Lanczos basis with q̂k+1 as the starting vector. After m � k steps of
the Lanczos algorithm, we appended Q̂k to the current Lanczos basis to form an augmented
Krylov subspace [4, 27]. Mathematically, this is equivalent to Algorithm 3. This variation
also has the advantage of allowing any number of arbitrary vectors to be appended at the
end. The drawback is that k matrix-vector multiplications have to be performed in order to
complete the Rayleigh-Ritz projection for the k vectors in Q̂k. Using Algorithm 3, to build up
the Lanczos basis of size m, only m� k matrix-vector multiplications are needed. Therefore
we prefer to use Algorithm 3. Later we will see that the restarted Lanczos algorithm with
partial re-orthogonalization computes solutions that are as accurate as the variant with full
re-orthogonalization.

6 E�ective re-orthogonalization procedure

An e�ective re-orthogonalization procedure needs to evaluate !i;j accurately and restore
orthogonality in the least amount of time. This section will address these two issues based
on a number of numerical experiments. In these experiments, we try to �nd the �ve largest
eigenvalues and their corresponding eigenvectors. The test matrices include NASASRB
and 14 other test matrices from various sources, such as magnetohydrodynamics, structure
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Figure 1: The orthogonality level (kQTQ� IkF ) of the bases prior to each restart.
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Figure 2: Estimated orthogonality level versus actual orthogonality level: (1) signed !-
recurrence, ignoring �i;j; (2) absolute !-recurrence, ignoring �i;j; (3) signed !-recurrence,
adding kdik; (4) absolute !-recurrence, adding kdik.

simulation, Ab Initio simulation of electronic properties, oceanographic model, and so on.
Information about three matrices that will also be used later are listed in Table 1. All test
matrices are in Harwell-Boeing format [11] and the three listed in the above table are among
the largest symmetric matrices available from MatrixMarket1 at the time of this test.

To accurately estimate !i;j using Equations 10 { 14, we need to estimate a number of
terms. The �rst one is �i;j � qTj di � qTi dj. In the previous implementations of partial re-
orthogonalization [14, 31], this term was assumed to be zero. These terms are related to
local round-o� errors, which are only a small part of the loss of orthogonality. By de�nition
of di = Aqi � �iqi � �i�1qi�1 � �iqi+1, we expect the primary components of di to be in the
direction of qi, qi�1 and qi+1. This again con�rms that most elements of �i;j are zero. We
can bound the magnitude of qTi�1di and qTi di by kdik. On this issue, we tested two options,

1MatrixMarket URL: http://math.nist.gov/MatrixMarket/.
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ignoring �i;j in the !-recurrence, or using kdik to replace �i;i�1 and qTi di in Equations 13 and
14. The testing results are shown in Figure 2. We will discuss them after we explain the
second set of plots in the �gure.

We can use Equations 10 { 14 as they are, with the plus and minus signs, or we can
overestimate !i;j and use only absolute values, for example, changing Equation 12 to

�i!i+1;j = j�j � �ij!i;j + �jj!i;j+1j+ �j�1j!i;j�1j+ �i�1j!i�1;jj+ j�i;jj:

The argument for using the absolute value in the recurrence is that we don't know the sign
of �i;j or the sign of !2;1 which is used to start the !-recurrence. Using absolute values in
the recurrence formulas will provide a correct upper bound on the orthogonality level. If we
don't use absolute values, the estimated orthogonality level can be smaller than the actual
orthogonality level. It is possible that a Lanczos vector would need to be re-orthogonalized
but the !-recurrence predicts that the orthogonality level is within tolerance. If the actual
orthogonality level is worse than

p
�u, the computed eigenvalues could be wrong. This is a

case that should be avoided.
Figure 2 compares the estimated loss of orthogonality by !-recurrence versus the actual

loss of orthogonality. The data is collected from all 15 test problems. The basis size is 20.
Only one starting vector is provided to the Lanczos routine. The vector is [1; 1; : : : ; 1]T .
The Lanczos method was able to �nd the �ve largest eigenvalues of all 15 test problems.
There are above 550 data points in each plot. Each data point is collected when a global re-
orthogonalization is performed, most of which are performed when the loss of orthogonality
is not severe, e.g., step (1.d) of Algorithm 3.

One obvious observation from Figure 2 is that using absolute values in !-recurrence
often causes the estimated orthogonality level to be signi�cantly larger than the actual
orthogonality level. When the !-recurrence is used as shown in Equations 10 { 14, the
estimated orthogonality level is still larger than the actual orthogonality level in most cases,
see plots (1) and (3). However, the data points in plots (1) and (3) are closer to the
diagonal than those in plots (2) and (4). The signed !-recurrence predicts 15 cases of severe
loss of orthogonality for all test problems. Among the 15 predicted cases of severe loss of
orthogonality, in only one case the actual orthogonality level is beyond the tolerance. The
!-recurrence with absolute values predicts 32 cases of severe loss of orthogonality, none of
which are true. By having the estimated orthogonality level closer to the actual value, we
reduce the total number of re-orthogonalizations needed. The data shown in Figure 2 are
collected with the maximum basis size 20. If the basis size is larger, the !-recurrence with
absolute values will cause even more unnecessary global re-orthogonalizations.

From Figure 2, we see that adding local round-o� error to the !-recurrence does not
signi�cantly change the estimated value of !i;j. There is no noticeable di�erence between
plots (1) and (3) or (2) and (4). Normally, the values of kdik are relatively small compared
to the other terms in the !-recurrence. However, since it does not cost many arithmetic
operations to compute, we decided to keep it to deal with the cases where the local round-o�
error happens to dominate.

We should avoid underestimating the orthogonality levels. However, Figure 2 reveals a
number of cases where the predicted orthogonality levels are lower than their actual values.
There are ten cases when using the signed !-recurrence and two cases when using the !-
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recurrence with absolute values. In all of these cases, the actual orthogonality levels are much
smaller than the tolerance, therefore it did not a�ect the accuracy of the solutions. The signed
!-recurrence may underestimate the loss of orthogonality. The experiments show that even
the !-recurrence with absolute values may underestimate the loss of orthogonality as well.
The �rst reason for this is that we do not have a proper estimate for the local round-o� error.
The local round-o� errors are generally small compared to other terms in !-recurrence. How-
ever, since we reset the !-recurrence to �u

p
n after global re-orthogonalizing, we essentially

ignored local round-o� error di associated with existing Lanczos vectors. The orthogonality
levels of the next few Lanczos vectors are estimated as if all previous Lanczos vectors are
computed accurately. In these cases, loss of orthogonality due to the local round-o� errors
�i;j may be larger than the other terms in the !-recurrence. The error bound on computing
dot-product of two unit vectors is roughly �un, but we estimate it to be �u

p
n through out

our computations [14] [15, Section 10.6] [17, 31]. This may also cause the orthogonality level
to be underestimated. Usually the local round-o� errors are small and �u

p
n can reasonably

represent the actual orthogonality level after global re-orthogonalization, therefore we do not
signi�cantly underestimate the orthogonality levels.

During the global re-orthogonalization, we use Equation 22 to determine whether to stop.
We need to evaluate � = kI�Wik. One obvious upper bound on � is i�q. However, this upper
bound is too large to be used e�ectively, see Figure 3 plots (2) and (4). Next we will give a
di�erent way of estimating �. In the implementations of the !-recurrence, the estimated loss
of orthogonality of qi+1 is saved in memory which can be used to estimate �, �� =

Pi
j=1 j!i+1;jj.

If two consecutive orthogonalizations are performed on a vector, we can have yet another
estimate of �. After the �rst Gram-Schmidt procedure in a global re-orthogonalization,
two consecutive orthogonalizations have been performed. We can approximate � as � =

kQT
i rik=

q
�2
i + �2

i�1. This estimate of � is an under-estimate. In our implementations, the
harmonic average of �� and � is used, i.e.,

� =
q
���: (30)

Immediately after restarting, the criterion for re-orthogonalization, Equation 22, contains �.
In this case, we cannot use the above formula to estimate �� because !k+2;j are not known. We
set �� to the previous estimate of � in our implementations of the partial re-orthogonalization
scheme.

Figure 3 compares the e�ect of � on the estimated orthogonality levels. We either compute
� with Equation 30 or set it to its upper bound � = i�q. The two plots on the left use the
estimate � as described by Equation 30 and the two on the right use upper bound i�q instead.
The data shown here are collected from all 15 test problems as in Figure 2. In fact, plot
(1) in Figure 3 is exactly the same as plot (3) of Figure 2. The data points in the two right
plots are clearly more concentrated toward the lower right corners, which indicates that
using upper bound for � cause the orthogonality levels to be signi�cantly overestimated. In
this set of tests, changing the actual value of � directly in
uences the loss of orthogonality
estimate of rk+1 but does not cause extra re-orthogonalization.

The value of � computed using Equation 30 may be less than the actual spectral radius
of Wi, which can cause the global re-orthogonalization procedure to terminate prematurely,
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Figure 3: Estimated loss of orthogonality versus actual loss of orthogonality: (1) basis size
20, estimate �; (2) basis size 20, � = i�q; (3) basis size 40, estimate �; (4) basis size 40,
� = i�q.
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see Equation 22. Fortunately, in our tests the estimates were close enough so that no adverse
e�ect was detected.

In summary, our implementations of the partial re-orthogonalization use signed !-recurrence
and add kdik to !i+1;i�1 and !i+1;i to account for the local round-o� errors. When determin-
ing whether to stop the global re-orthogonalization, see Equation 22, we estimate the norm
of kW � Ik using Equation 30.

7 Errors in solutions

In previous sections we have presented a restarted Lanczos algorithm and studied how or-
thogonality of the Lanczos vectors a�ects the accuracies of the coe�cients �i and �i. This
section will look at how loss of orthogonality a�ects the accuracy of the solutions. Given that
the Lanczos eigenvalue method is iterative in nature, the accuracy of the estimated errors
used in the convergence test is of particular interest. This section will also show the actual
errors of three di�erent implementations of the restarted Lanczos method on a handful of
test problems.

At the end of Section 5, we described two schemes of computing accurate �i and �i using
the restarted Lanczos algorithm, the full re-orthogonalization or the partial re-orthogonalization
with correction. We have also shown that the partial re-orthogonalization (PRO) scheme
which orthogonalizes the last residual vector rm can maintain orthogonality that is close to
�u, see Figure 1. Thus it should be able to generate accurate solutions as well. We have
three schemes for implementing the restarted Lanczos algorithm. In the two cases where �i

and �i are computed accurately, we understand that the Lanczos recurrence relation, Equa-
tion 1, is satis�ed to O(�ukAk) accuracy. Next we will estimate the errors when only partial
re-orthogonalization is used.

Before the �rst restart in the Lanczos method with partial re-orthogonalization, Equa-
tion 29 is satis�ed. If we restart with Q̂k = QmY , Equation 2 is not satis�ed, i.e., AQ̂k 6=
Q̂kT̂k + �mqm+1e

T
mY . Since Tm is accurate when the Lanczos vectors are semi-orthogonal,

T̂k = Y TTmY is the same as what is expected when the Lanczos vectors are computed to
full accuracy. The error in Q̂k can be measured as follows,

Z � (I � Q̂�Tk Q̂�k)Q̂k = (I �NmY Y
TNT

m)NmLmY

= Nm(I � Y Y T )LT
mY = Nm(I � Y Y T )~LT

mY;

where ~Lm is the o�-diagonal part of Lm, ~Lm = Lm�I. If Y is a basis of an invariant subspace
of LT

m, then this error is zero. Unless Lm is reducible to smaller triangular matrices, the only
invariant subspaces of LT

m is the space spanned by em. Normally Lm would not be reducible.
Therefore the error in Q̂k is roughly on the order of k~Lmk � m�q.

The error Z is re
ected in the solutions as discrepancies between estimated and actual
residual norms. Let �; y be an eigenpair of Tm, i.e., Tmy = �y. The residual of Ritz pair
�;Qmy is

r = AQmy � �Qmy = ANmL
T
my � �NmL

T
my;

= Nm(Tm � �I)LT
my + �mqm+1e

T
mL

T
my;

= Nm(Tm � �I)LT
my + �mqm+1e

T
my: (31)
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If the Lanczos vectors are exactly orthogonal, the residual for the Ritz pair (�;Qmy) is the
second term of above equation, r = �mqm+1e

T
my. The residual due to loss of orthogonality is

rq = Nm(Tm � �I)LT
my, its norm is bounded as follows,

krqk � kNmkkTm � �IkkLT
mkkyk � (�max(Tm)� �min(Tm))m�q:

One way we might use this error bound is to compute the maximum �q. If we want to
compute the residual norm of the computed Ritz pairs to be less than � , we would like to
have krk = j�meTmyj > krqk. The intention is to make sure the residual norm estimate is
accurate until the Ritz pair is declared as converged. The above condition can be written as
� > krqk which leads to the following condition of tolerance on the orthogonality levels,

�q <
�

m(�max(A)� �min(A))
:

In most of the examples, we attempt to compute the largest eigenvalues to the following
accuracy krk � 10�8j�j using a basis size of 10 { 20. In these cases, we choose �q = 10�8=m.

We will test three implementations of the restarted Lanczos algorithm: using partial
re-orthogonalization (PRO) without correction, using partial re-orthogonalization with cor-
rection, and maintaining full orthogonality. The three test matrices are shown in Table 1.
The examples compute the �ve largest eigenvalues and their corresponding eigenvectors. The
convergence tolerance is set to krk � 10�8j�j. Aside from the three di�erent restarted Lanc-
zos methods, we also applied PARPACK to solve the same test problems. The PARPACK
program is based on ARPACK version 2.1 dated 3/19/97. The above convergence test is also
used in PARPACK for symmetric eigenvalue problems2. The eigenvalues are computed and
their corresponding errors are shown in Tables 2 { 5. The tables list the eigenvalues computed
(�i), the di�erences between the computed eigenvalues and the Rayleigh quotients of the

computed eigenvectors (
xT
i
Axi

xT
i
xi
� �i), the estimated residual norms (j�meTmyj), and the actual

residual norms (kAxi � �ixik). The tables also show the number of matrix-vector multipli-
cations (MATVEC), the number of restarts, and the number of global re-orthogonalizations
(re-orthog) used by the four di�erent methods.

The data in Tables 2 { 5 are designed to show errors in the computed solutions. Our
goal is to measure how much error is introduced by loss of orthogonality. Ideally, we would
like to compare the quantities computed by the Lanczos programs against those computed
in exact arithmetic. Since we cannot produce the exact solution easily, we resolve to use
the following two quantities to measure the errors due to loss of orthogonality. As shown in
Equation 31, when there is loss of orthogonality, the actual residuals of the computed Ritz
pairs would be di�erent than the predictions that were based on exact arithmetic. Thus
one measure indication of errors due to loss of orthogonality is the di�erence between the
predicted residual norms and the actual residual norms. Loss of orthogonality a�ects the
accuracies of �i and �i. In exact arithmetic, �i and �i would be accurate and the Ritz
values computed as the eigenvalues of Tm would be equal to the Rayleigh quotients of their
corresponding Ritz vectors. In Section 5, we have shown that the coe�cients �i and �i can

2Additional information on PARPACK and ARPACK can be found at http://www.caam.rice.edu/-
software/ARPACK.
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thick-restart Lanczos with PRO
MATVEC: 90, restarts: 8, re-orthog: 16

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 2648056755.2108874 1.43E-06 4.92E-01 4.92E-01
2 2647979344.2127838 -1.91E-06 7.48E-01 7.48E-01
3 2634048614.9912028 4.29E-06 1.41E+00 1.41E+00
4 2633679289.2081308 3.81E-06 2.32E+00 2.32E+00
5 2606151408.4051986 9.54E-07 7.22E+00 7.22E+00

thick-restart Lanczos with PRO and correction
MATVEC: 90, restarts: 8, re-orthog: 16

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 2648056755.2108870 1.91E-06 4.92E-01 4.92E-01
2 2647979344.2127848 -1.43E-06 7.48E-01 7.48E-01
3 2634048614.9912038 1.43E-06 1.41E+00 1.41E+00
4 2633679289.2081327 3.34E-06 2.32E+00 2.32E+00
5 2606151408.4052033 -4.29E-06 7.22E+00 7.22E+00

thick-restart Lanczos with full re-orthogonalization
MATVEC: 90, restarts: 8, re-orthog: 88

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 2648056755.2108898 -9.54E-07 4.92E-01 4.92E-01
2 2647979344.2127857 -1.91E-06 7.48E-01 7.48E-01
3 2634048614.9912052 4.77E-07 1.41E+00 1.41E+00
4 2633679289.2081337 0.00E+00 2.32E+00 2.32E+00
5 2606151408.4051962 1.91E-06 7.22E+00 7.22E+00

PARPACK(20)
MATVEC: 157, restarts: 11, re-orthog: 156

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 2648056755.2108912 -3.34E-06 7.11E-08 4.56E-06
2 2647979344.2127795 3.34E-06 8.02E-09 6.88E-06
3 2634048614.9912057 0.00E+00 5.39E-07 3.21E-06
4 2633679289.2081347 -9.54E-07 9.91E-07 3.35E-06
5 2606151408.4052033 -2.86E-06 8.46E-01 8.46E-01

Table 2: The largest eigenvalues of NASASRB and their errors (basis size 20).
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thick-restart Lanczos with PRO
MATVEC: 185, restarts: 46, re-orthog: 92

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 2648056755.2108932 -5.25E-06 7.69E-05 7.57E-05
2 2647979344.2127895 -5.72E-06 1.19E-04 1.28E-04
3 2634048614.9912024 3.34E-06 3.68E-03 3.68E-03
4 2633679289.2081351 -4.77E-07 6.56E-03 6.57E-03
5 2606151408.4051919 6.68E-06 1.06E+01 1.06E+01

thick-restart Lanczos with PRO and correction
MATVEC: 185, restarts: 46, re-orthog: 92

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 2648056755.2108908 -2.86E-06 7.69E-05 7.87E-05
2 2647979344.2127919 -8.11E-06 1.19E-04 1.19E-04
3 2634048614.9912133 -9.06E-06 3.68E-03 3.68E-03
4 2633679289.2081370 -1.43E-06 6.56E-03 6.56E-03
5 2606151408.4051905 8.58E-06 1.06E+01 1.06E+01

thick-restart Lanczos with full re-orthogonalization
MATVEC: 185, restarts: 46, re-orthog: 182

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 2648056755.2108812 8.58E-06 7.69E-05 7.67E-05
2 2647979344.2127852 -4.29E-06 1.19E-04 1.19E-04
3 2634048614.9911947 1.00E-05 3.68E-03 3.68E-03
4 2633679289.2081351 1.43E-06 6.56E-03 6.56E-03
5 2606151408.4051809 1.72E-05 1.06E+01 1.06E+01

PARPACK(10)
MATVEC: 184, restarts: 39, re-orthog: 183

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 2648056755.2108836 4.29E-06 5.37E-06 1.18E-05
2 2647979344.2127848 -1.91E-06 6.08E-07 3.33E-06
3 2634048614.9912062 -1.91E-06 7.10E-05 7.10E-05
4 2633679289.2081342 4.77E-07 1.32E-04 1.32E-04
5 2606151408.4051933 5.72E-06 1.63E+01 1.63E+01

Table 3: The largest eigenvalues of NASASRB and their errors (basis size 10).
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thick-restart Lanczos with PRO
MATVEC: 2269, restarts: 465, re-orthog: 930

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 8798.4363691285525 2.00E-11 9.15E-14 5.03E-11
2 8796.7159980617544 -4.18E-11 4.57E-11 7.73E-11
3 8794.1437886041895 3.09E-11 1.53E-06 1.53E-06
4 8793.9361552127648 2.18E-11 4.28E-06 4.28E-06
5 8792.3179110199835 -9.82E-11 5.66E-05 5.66E-05

thick-restart Lanczos with PRO and correction
MATVEC: 2269, restarts: 465, re-orthog: 930

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 8798.4363691285835 -2.00E-11 9.10E-14 4.76E-11
2 8796.7159980616507 5.46E-11 4.82E-11 9.21E-11
3 8794.1437886042440 -3.64E-12 1.63E-06 1.63E-06
4 8793.9361552127575 2.36E-11 4.54E-06 4.54E-06
5 8792.3179110199835 -1.22E-10 6.05E-05 6.05E-05

thick-restart Lanczos with full re-orthogonalization
MATVEC: 2269, restarts: 465, re-orthog: 2263

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 8798.4363691285998 -3.82E-11 1.01E-13 7.72E-11
2 8796.7159980618926 -1.71E-10 4.67E-11 1.99E-10
3 8794.1437886042459 -5.46E-12 1.61E-06 1.61E-06
4 8793.9361552127393 4.18E-11 4.51E-06 4.51E-06
5 8792.3179110199180 -4.00E-11 6.13E-05 6.13E-05

PARPACK(10)
MATVEC: 4459, restarts: 1310, re-orthog: 4458

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 8798.4363691285907 -2.73E-11 4.20E-19 6.45E-11
2 8796.7159980616543 4.18E-11 1.12E-15 8.83E-11
3 8794.1437886042349 0.00E+00 4.18E-09 4.17E-09
4 8793.9361552128848 -1.13E-10 7.75E-10 7.85E-10
5 8792.3179110193978 1.87E-10 8.65E-05 8.65E-05

Table 4: The �ve largest eigenvalues of S3DKT3M2 and their errors (basis size 10).
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thick-restart Lanczos with PRO
MATVEC: 5119, restarts: 1516, re-orthog: 3029

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 4601.6534362483071 -1.02E-10 8.76E-27 1.11E-10
2 4600.8516475995593 -4.64E-11 6.47E-19 1.91E-10
3 4599.5157181857421 -5.38E-10 7.79E-17 5.72E-10
4 4598.2818892741634 1.26E-10 3.64E-12 1.69E-10
5 4597.6462278967929 -2.30E-10 4.50E-05 4.50E-05

thick-restart Lanczos with PRO and correction
MATVEC: 5113, restarts: 1514, re-orthog: 3025

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 4601.6534362481598 4.64E-11 1.77E-26 4.77E-11
2 4600.8516475997794 -2.64E-10 6.79E-19 3.27E-10
3 4599.5157181855975 -3.97E-10 8.09E-17 4.37E-10
4 4598.2818892741143 1.76E-10 3.74E-12 2.05E-10
5 4597.6462278967292 -1.83E-10 4.59E-05 4.59E-05

thick-restart Lanczos with full re-orthogonalization
MATVEC: 5119, restarts: 1516, re-orthog: 5105

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 4601.6534362481489 5.64E-11 1.64E-26 7.08E-11
2 4600.8516475997076 -1.94E-10 6.47E-19 2.67E-10
3 4599.5157181855830 -3.78E-10 7.79E-17 4.17E-10
4 4598.2818892742534 4.09E-11 3.64E-12 7.63E-11
5 4597.6462278967347 -1.77E-10 4.50E-05 4.50E-05

PARPACK(10)
MATVEC: 3646, restarts: 1516, re-orthog: 3645

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 4601.6534362481807 2.27E-11 1.20E-17 3.22E-11
2 4600.8516475994866 2.09E-11 5.66E-15 3.87E-11
3 4599.5157181852219 -2.27E-11 6.18E-11 6.79E-11
4 4598.2818892742935 4.55E-12 1.91E-06 1.91E-06
5 4597.6462278966010 3.46E-11 4.54E-05 4.54E-05

Table 5: The �ve largest eigenvalues of S3DKQ4M2 and their errors (basis size 10).
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be computed in a number of cases. We would like to verify the claim by measuring the
di�erence between the Ritz values and the Rayleigh quotients. The reference quantities are
computed using 
oating-point arithmetic as well. We consider the di�erences as zero if they
are less than the errors in the reference quantities. The error in multiplying A with a unit
vector is �ukAk. The upper bound of error in a residual norm explicitly computed using
krk = kAx� �xk is no less than �ukAk. Therefore, we consider them zero if the di�erences
between the predicted residual norms and the actual residual norms are smaller than �ukAk.
Similarly, the error in computing a Rayleigh quotient xTi Axi=x

T
i xi is roughly �ukAk and we

consider them zero if the di�erences between the Ritz values and the Rayleigh quotients

(
xT
i
Axi

xT
i
xi
� �i) are smaller than �ukAk.

Let's �rst compare the predicted residual norms and the actual residual norms. Table 2
shows results from solving the NASASRB test problem with basis size of 20. This example
only needs a handful of restarts. We notice a di�erence between predicted residual norms
(j�meTmyj) and the actual computed residual norms for PARPACK. The di�erences are about
10�6, which are close to �ukAk. This con�rms that PARPACK maintains full orthogonality
among the basis vectors. The data shown in Table 3 are the results of solving the NASASRB
test problem with basis size 10, which requires about 40 restarts. In this case, all four
methods solved the eigenvalue problem to about the same accuracy. The discrepancies
between predicted residual norms and computed residual norms are on the order of 10�5 for
thick-restart Lanczos with PRO and PARPACK, which is 14 orders of magnitude smaller
than the norm of the matrix. The two other methods have a maximum discrepancy of about
10�6. The discrepancies for the S3DKT3M2 test problem, see Table 4, are mostly on the
order of 10�11, which is again 14 orders of magnitude smaller than the matrix norm. The
discrepancies for the restarted Lanczos method with full orthogonality are slightly larger
than the others, as large as 10�10. The discrepancies between the estimated residual norms
and the actual residual norms for S3DKQ4M2, see Table 5, are on the order of 10�10 for
the three restarted Lanczos variants and 10�11 for PARPACK. Overall, the discrepancies are
about 2 { 3 orders of magnitude larger than �ukAk no matter whether the eigenvalue routine
maintains full orthogonality or semi-orthogonality.

The second indicator of error is the di�erence between the computed Ritz value and the

Rayleigh quotient, (
xT
i
Axi

xT
i
xi
��i). In Table 2, these di�erences are on the order of 10�6 for most

eigenvalues computed by all four methods. The same is true in Table 3, except for two entries
for the thick-restart Lanczos method with full re-orthogonalization where the di�erences are
about 10�5. In S3DKT3M3 example, see Table 4, the di�erences between Ritz values and
Rayleigh quotients are mostly on the order of 10�11 with a few exceptions of 10�10. In
this case, the thick-restart Lanczos method with partial re-orthogonalization and correction
(TRLan PRO-c) has slightly smaller di�erences than others. In S3DKQ4M2 example, see
Table 5, the di�erences are predominantly on the order of 10�10, except PARPACK has
slightly smaller di�erences between the Ritz values and the Rayleigh quotients.

Overall, there is no indication that the solutions computed by the thick-restart Lanczos
method with partial re-orthogonalization are inferior to the other two restarted Lanczos
schemes. The errors in the computed solutions are about the same sizes for PARPACK as
well.
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Figure 4: Time spent to solve the three test problems on Cray T3E900.

Tables 2 { 5 also show the number of matrix-vector multiplications used by the four
methods tested and Figure 4 shows the timing results on the test problems. The timing
results were collected on the T3E 900 at National Energy Research Scienti�c Computing
Center (NERSC)3. The three restarted Lanczos methods are implemented with the same
restarting scheme which attempts to mimic the restarting scheme of PARPACK. The num-
bers of matrix-vector multiplications used by the three restarted Lanczos methods are the
same most of the time, however they are di�erent from that of PARPACK. The di�erences
in the restarting schemes are the main causes for these dramatic di�erences in the numbers
of matrix-vector multiplications. When similar numbers of matrix-vector multiplications are
used, the thick-restart Lanczos method with partial re-orthogonalization uses less time than
the other methods. PARPACK implements the Arnoldi algorithm described in Algorithm 2
which has a more expensive orthogonalization step than that of Algorithm 3 and it per-
forms global re-orthogonalization at almost every step. Overall, it takes more time than the
restarted Lanczos implementations tested when a similar number of matrix-vector multiplica-
tions are used. In most cases, the time spent by the Lanczos with partial re-orthogonalization
and correction is about the same as the one with full re-orthogonalization.

In many practical applications, the user often wants to know the smallest eigenvalue of a
matrix. The smallest eigenvalues of the three test matrices shown in Table 1 need consider-
ably more matrix-vector multiplications than the largest ones. For example, without restart,
only 75 matrix-vector multiplications are needed to compute the �ve largest eigenvalues of
NASASRB, but 11,600 matrix-vector multiplications are needed to compute the smallest
eigenvalue. Table 6 shows the results of using the restarted methods to �nd the smallest

3General information located at http://www.nersc.gov/.
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thick-restart Lanczos with PRO
MATVEC: 50471, restarts: 51, re-orthog: 14713

time: 9798 seconds on 8 PEs

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 4.7434129039704969 8.27E-07 2.32E-15 5.47E-04
2 5.0304972052890955 4.37E-07 2.00E-15 4.20E-04
3 57.269882264578108 8.91E-07 2.47E-07 6.81E-04
4 59.325145999622919 -1.18E-07 8.06E-10 4.76E-04
5 114.48805504571098 3.42E-08 1.37E-04 1.17E-03

thick-restart Lanczos with full re-orthogonalization
MATVEC: 50467, restarts: 51, re-orthog: 50423

time: 8546 seconds on 8 PEs

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 4.7434139714076551 -2.40E-07 3.87E-15 1.83E-06
2 5.0304978087926671 -1.66E-07 3.34E-15 1.85E-06
3 57.269882851333911 3.04E-07 3.98E-07 1.09E-06
4 59.325143838635135 2.04E-06 1.30E-09 3.02E-06
5 114.48805524461864 -1.65E-07 2.27E-04 2.27E-04

PARPACK
MATVEC: 46761, restarts: 61, re-orthog: 46760

time: 8547 seconds on 16 PEs

i �i
xT
i
Axi

xT
i
xi
� �i j�meTmyj kAxi � �ixik

1 388.43347600844902 -5.14E-07 6.99E+03 6.99E+03
2 1961.8238927546274 -1.94E-07 1.69E+04 1.69E+04
3 9890.9668426024327 -7.96E-09 5.92E+04 5.92E+04
4 18693.850673534958 4.62E-08 8.49E+04 8.49E+04
5 34854.798171100148 -2.88E-07 5.84E+04 5.84E+04

Table 6: The �ve smallest eigenvalues of NASASRB and their errors (basis size 1,000).
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eigenvalues of NASASRB. A basis size of 1,000 is used in this test because smaller basis sizes
are ine�ective in �nding the desired solutions. Using basis size of 100, the smallest Ritz val-
ues computed by the four restarted methods are all larger than ten. Using basis size of 1,000,
the restarted Lanczos method with partial re-orthogonalization and the restarted Lanczos
method with full re-orthogonalization declare the smallest four eigenvalues converged after
about 50,000 matrix-vector multiplications. On the Cray T3E at NERSC, the longest jobs
are limited to four hours long and di�erent numbers of processors are used to allow our tests
to �nish. The time and the number of processors used are shown in Table tb:srb1000. The
PARPACK routine is stopped after 60 restarts and its results are used to give a reference
to the error in Ritz values. A more e�ective scheme of computing the smallest eigenvalue
of NASASRB is a shift-and-invert Lanczos algorithm. However, the main reason to study
this example is to show that the restarted Lanczos method can �nd solutions to di�cult

eigenvalue problems. Even in this di�cult case, the restarted Lanczos method with partial
re-orthogonalization generates accurate eigenvalues.

In Table 6, the di�erences between Ritz values �i and the Rayleigh quotients of their
corresponding Ritz vectors are on the order of �ukAk. In fact the di�erences are roughly
16 orders of magnitudes smaller than the matrix norm which are smaller than the same
di�erences when computing the largest eigenvalues, see Tables 2 and 3. The di�erences
for the Lanczos method with partial re-orthogonalization are about the same size as the
di�erence for PARPACK. This again shows that the Ritz values computed by the restarted
Lanczos methods are accurate.

The discrepancies between the estimated residual norms and the computed residual norms
are as large as 10�3 for the restarted Lanczos method with partial re-orthogonalization,
which is clearly larger than 10�6, the discrepancies for the Lanczos method with full re-
orthogonalization. The value of 10�6 is close to �ukAk for this test matrix. The discrep-
ancies of 10�3 are considerably larger than �ukAk, which indicates that the Ritz vectors
computed by the Lanczos method with partial re-orthogonalization are not as accurate as
the Ritz vectors computed by the Lanczos method with full re-orthogonalization. In previ-
ous examples, the di�erence between the Lanczos method with partial re-orthogonalization
and the Lanczos method with full re-orthogonalization were too small to be noticed. By
comparing the discrepancies from the two variants of the restarted Lanczos method, we see
that the orthogonality level of bases generated with partial re-orthogonalization is roughly
three order of magnitude worse than the orthogonality level of bases generated with full
re-orthogonalization. The bases generated with partial re-orthogonalization are still semi-
orthogonal, but the orthogonality level is worse than in previous examples.

The number of re-orthogonalizations performed by the Lanczos method with partial re-
orthogonalization is 14,713 in this example. Subtracting two global re-orthogonalizations
per restart due to the structure of the algorithm, there are 14,611 re-orthogonalization due
to severe loss of orthogonality. When seeking the largest eigenvalues of NASASRB, there
is almost no re-orthogonalization due to severe loss of orthogonality. The large number of
re-orthogonalizations is detrimental to the overall performance because the Gram-Schmidt
procedure has to be invoked frequently to restore the orthogonality. Overall, the total time
used by the Lanczos method with full re-orthogonalization is 8,546 seconds, which is almost
15% less than the time used by the Lanczos method with partial re-orthogonalization, 9,798
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seconds. Since the number of matrix-vector multiplications are very close and the number of
restarts are the same, the di�erence in re-orthogonalization should be the main cause of the
time di�erence. Another side e�ect of frequent occurrences of severe loss of orthogonality is
the above-mentioned worsening orthogonality level.

From the above tests we also notice that the maximum basis size has a strong in
uence
on the time it takes to �nd the desired solutions. For example, when the maximum basis
size is ten the restarted versions of Lanczos method used more than 5,000 matrix-vector
multiplications and almost 600 seconds on two processors of the T3E to �nd the �ve largest
eigenvalues of S3DKQ4M2. When the maximum basis size increases to 20, the number
of matrix-vector multiplications decreases to just above 800 and execution time reduces to
around 100 seconds on two processors. Had we not restarted, the number of Lanczos steps
required would be 617. The 617 Lanczos vectors can �t on four processors of the T3E used
and it takes 160 seconds on two processors. In this case, a basis size of 20 seems to be
e�ective, but a basis size of 10 causes an excessive number of matrix-vector multiplications
to be used.

8 Summary

The main goal of this paper is to study how to implement an e�ective restarted Lanczos
method for real symmetric eigenvalue problems. The emphasis is on how to maintain semi-
orthogonality and to reduce the amount of arithmetic operations. The method generated
from this study is the thick-restart Lanczos method with partial re-orthogonalization. It
restarts with Ritz vectors and computes the last residual vector of the Lanczos iterations
accurately before restarting. This restarted Lanczos algorithm is as inexpensive as the
original Lanczos algorithm and it computes accurate eigenvalues without maintaining full
orthogonality among the Lanczos vectors. In most examples shown, the quality of the
solutions found by the restarted Lanczos method with partial re-orthogonalization is the
same as that of the Lanczos method with full re-orthogonalization.

We have noticed a case where the partial re-orthogonalization scheme did not produce
solutions with the same accuracies as the full re-orthogonalization scheme. In this case,
the Ritz values computed are still accurate, but the di�erences between estimated resid-
ual norms and actual residual norms are larger for the Lanczos method with partial re-
orthogonalization. In this case, we try to compute the smallest eigenvalues of NASASRB.
Using the Lanczos method without restart, roughly 2,000 eigenvalues on the high-end of the
spectrum converged before the smallest one reached convergence. Each time an eigenvalue
reaches convergence, a Lanczos vector may lose orthogonality. In this case, the restarted
Lanczos method will encounter severe loss of orthogonality frequently and have to per-
form global re-orthogonalization frequently. Overall, due to the large numbers of global
re-orthogonalizations in the partial re-orthogonalization scheme, it is more e�cient to sim-
ply use the full re-orthogonalization for this particular problem.

From our experiments, we see that the di�erences in execution time due to various re-
orthogonalization schemes are consistent in most cases. However, the di�erences due to the
re-orthogonalization schemes are often not as important as other factors, for example, the
maximum basis size and the restarting scheme. Our experiments indicate that di�erences in
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the maximum basis sizes can signi�cantly alter the time required to �nd the solution for a
given eigenvalue problem and a small change in number of Ritz vectors saved at restart can
also change the total execution time signi�cantly. These issues are not unique to restarted
Lanczos methods. They are common to all restarted methods [2, 5, 10, 36, 37, 43]. We only
showed the results of using one very simple restarting scheme. Since the Lanczos method can
provide estimated residual norms cheaply, it may be used to enhance the restarting schemes
and speed-up the overall solution process.

In the process of developing an e�cient restarted Lanczos method, we also studied how
the orthogonality is related to the accuracy of projected matrix and how repeating the
Gram-Schmidt procedure restores the orthogonality. The criteria for terminating the re-
orthogonalization process can also be used in other algorithms where orthogonality is re-
quired.
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