Abstract
This paper describes a restarted Lanczos algorithm that particularly suitable for implementation on distributed machines. The only communication operation is requires outside of the matrix-vector multiplication is a global sum. For most large eigenvalue problems, the global sum operation takes a small fraction of the total execution time. The majority of the computer is spent in the matrix-vector multiplication. Efficient parallel matrix-vector multiplication routines can be found in many parallel sparse matrix packages such as AZTEC [9], BLOCK-SOLVE [10], PETSc [3], P_SPARSLIB. For this reason, our main emphasis in this paper is to demonstrate the correctness and the effectiveness of the new algorithm.
This work was supported by the Director, Office of Energy Research, Office of Laboratory Policy and Infrastructure Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Preview
Unable to display preview. Download preview PDF.
References
W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics, 9:17–29, 1951.
J. Baglama, D. Calvetti, and L. Reichel. Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. BIT, 36:400–421, 1996.
S. Balay, W. Gropp, L. C. McInnes, and B. Smith. PETSc 2.0 users manual. Technical Report ANL-95/11, Mathematics and Computer Science Division, Argonne National Laboratory, 1995. Latest source code available at URL http://www.mcs.anl.gov/petsc.
A. Chapman and Y. Saad. Deflated and augmented Krylov subspace techniques. Technical Report UMSI 95/181, Minnesota Supercomputing Institute, University of Minnesota, 1995.
M. Crouzeix, B. Philippe, and M. Sadkane. The Davidson method. SIAM J. Sci. Comput., 15:62–76, 1994.
Ernest R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys., 17:87–94, 1975.
Ernest R. Davidson. Super-matrix methods. Computer Physics Communications, 53:49–60, 1989.
G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, MD 21211, third edition, 1996.
S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro. AZTEC user's guide. Technical Report SAND95-1559, Massively parallel computing research laboratory, Sandia National Laboratories, Albuquerque, NM, 1995.
M. T. Jones and P. E. Plassmann. Blocksolve95 users manual: scalable library software for parallel solution of sparse linear systems. Technical Report ANL95/48, Mathematics and Computer Science Division, Argonne national laboratory, Argonne, IL, 1995.
Richard B. Lehoucq. Analysis and implementation of an implicitly restarted Arnoldi iteration. PhD thesis, Rice University, 1995.
Ronald B. Morgan. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems. Mathematics of Computation, 65(215):1213–1230, July 1996.
Beresford N. Parlett. The symmetric eigenvalue problem. Prentice-Hall, Englewood Cliffs, NJ, 1980.
Y. Saad. Analysis of augmented Krylov subspace techniques. Technical Report UMSI 95175, Minnesota Supercomputing Institute, University of Minnesota, 1995.
Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, 1993.
Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, Boston, MA, 1996.
Miloud Sadkaue. A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices. Numer. Math., 64(2):181–193, 1993.
D. Sorensen, R. Lehoucq, P. Vu, and C. Yang. ARPACK: an implementation of the Implicitly Restarted Arnoldi iteration that computes some of the eigenvalues and eigenvectors of a large sparse matrix, 1995.
D. S. Sorensen. Implicit application of polynomial filters in a K-step Arnoldi method. SIAM J. Matrix Anal. Appl., 13(1):357–385, 1992.
A. Stathopoulos, Y. Saad, and K. Wu. Thick restarting of the Davidson method: an extension to implicit restarting. In T. Manteuffel, S. McCormick, L. Adams, S. Ashby, H. Elman, R. Freund, A. Greenbaum, S. Parter, P. Saylor, N. Trefethen, H. van der Vorst, H. Walker, and O. Wildlund, editors, Proceedings of Copper Mountain Conference on Iterative Methods, Copper Mountain, Colorado, 1996.
A. Stathopoulos, Y. Saad, and K. Wu. Dynamic thick restarting of the Davidson and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput., 19(1):227–245, 1998.
Kesheng Wu. Preconditioned Techniques for Large Eigenvalue Problems. PhD thesis, University of Minnesota, 1997. An updated version also appears as Technical Report TR97-038 at the Computer Science Department.
Kesheng Wu and Horst Simon. Thick-restart Lauczos method for symmetric eigenvalue problems. Technical Report 41412, Lawrence Berkeley National Laboratory, 1998.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, K., Simon, H.D. (1998). Thick-restart Lanczos method for symmetric eigenvalue problems. In: Ferreira, A., Rolim, J., Simon, H., Teng, SH. (eds) Solving Irregularly Structured Problems in Parallel. IRREGULAR 1998. Lecture Notes in Computer Science, vol 1457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018526
Download citation
DOI: https://doi.org/10.1007/BFb0018526
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64809-3
Online ISBN: 978-3-540-68533-3
eBook Packages: Springer Book Archive