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Abstract. The need to solve linear systems arising from problems posed 
on extremely large, unstructured glids has sparked great interest in pa- 
all&zing algebraic multigrid (AMG) To date, howeva, no parallel AMG 
algorithms exist We introduce a paallel algorithm fol the selection of 
coals-glid points, a aucial component of AMG, based on modifica- 
tions of certain paallel independent set algorithms and the application of 
heuistics designed to insme the quality of the cease glids A prototype 
serial version of the algorithm is implemented, and tests are conducted 
to d&amine its effect on multigrid convergence, and AMG complexity 

1 Introduction 

Since the intlodurtion of algebraic multiglid (AMG) in the 1980’s 14, 2, 3, 5, 19, 
16, 18, 171 the method has attxxted the attention of scientists needing to solve 
lage problems posed on unstIuctmed glids Recently, there has heen a majo1 
surge of intarst in the field, due in large pat to the need to solve increasingly 
larga systems, with hundreds of millions 01 billions of unknowns Most of the 
culent research, however, focuses either on imploving the standad AMG algo- 
lithm [9, 71, or on dramatic new algebraic approaches [20, 61 Little research has 
been done on parallelizing AMG The sizes of the modan problems, howeva, 
dictate that lage-scale parallel processing be employed 

Methods fol paIallelizing geometric multigtid methods have been known fol 
some time [lo], and most of the AMG algorithm can be palallelized using existing 
technology Indeed, much of the parallelization can be accomplished using tools 
teadily available in pa&ages such as PETSc or ISIS++ But, the heart of the 
AMG setup phase includes the coaxe-grid selection process, which is inherently 
sequential in natue 

In this note we introduce a pa&l algorithm fol selecting the coaxe-glid 
points The algorithm is based on modifications of paallel independent set algo- 
lithms Also, we employ heuristics designed to inswe the quality of the ~oase 
glids A prototype serial code is implemented, and we examine the effect the 
algorithm has on the multigrid convergence properties 

In Section 2 we outline the basic principles of AMG Section 3 dexlibes 
our pa~allclization model and the undalying philosophy, while the details of the 
paallel algorithm are given in Section 4 Results of numerical experiments with 
the se&l prototype ate presented and analyzed in Section 5 In Section 6 we 
make concluding remarks and indicate directions for futwe Iesealch 



2 Algebraic Multigrid 

We begin by outlining the basic principles of AMG Detailed explanations may 
be found in [17] Consida a problem of the foun Au = f, where A is an n x n 
matrix with at&s aij For AMG, a “grid” is simply a set of indices of the 
variables, so the o&&al grid is denoted by R = {I, 2, , IL} In any multigrid 
method, the tentml idea is that aro~ e not eliminated by l&x&ion is eliminated 
by solving the residual equation Ae = r on a coasel glid, then intetpolating 
e and using it to correct, the fine-glid appmximation The coarse-glid problem 
itself is solved hy a recursive application of this method Proceeding through all 
levels, this is known as a multiglid cycle One purpose of AMG is to free the 
solver fmm dependence on geometry (which may not be easily accessible, if it is 
known at all) Hence, AMG fixes a relaxation method, and its main task is to 
d&amine a coatsrning process that approximates err01 the relaxation cannot 
,educe 

Using superscripts to indicate level numba, whele 1 denotes the finest level 
so that A’ = A and n’ = 0, the components that AMG needs ale: “glids” 
R’ > L?z 3 > Q”; grid opetatols A’,AL, , AM, intapolation opelatom 
I;+l,k = 1,2, M - 1, restriction operators $+I, Ic = 1,2, Af - 1, and a 
relax&xl scheme fol each level Once these components .ae defined, the lerur- 
sively defined multigrid cycle is as follows: 

Algorithm: hll’“(u”, f”) The (pl, /I~) V-cycle 
If k = M, set u”” = (A”)-If”” 
Othawise: 

Relax 11, times on Anuk = f” 
Pelfcnm coa~e glid collection 

set &+I = 0, f”+’ = ,;+I (f” _ Aku”) 

“Solve” on level k + 1 with MV”+l(&+‘, fk+‘) 
Conect the solution by uk c Us + 1k+1u’+1 

Relax v2 times on A%“‘ = f” 

FOI this to walk efficiently, two ptinciples must be followed 

Pl: Errors not ejjicieiciently reduced by ~elaaution must be well-approximated 
by the range of interpolation 

P2: The coarse-grid problem must provide a good approximation to fine- 
gvld errw in the range of interpolation 

AMG satisfies Pl by automatically sekxting the coxse glid and defining inte- 
polation, based solely on the algebl& equations of the system P2 is satisfied 
by defining lestliction and the coaxe-glid opexatoz by the Galerkin formulation 
[14]: 

I!+’ = (I;+1)’ and Ak+’ = I,k+lA”I;+, I (1) 

Selecting the AMG components is done in a sepalate pleploressing step 



AMG Setup Phase: 
1 Setk=l 
2 Patition n” into disjoint sets Ck and F” 

(a) Set Ilk+’ = @ 
(b) Define interpolation 1i+1 

3 Set I;+l = (1;+1)’ and A”+l = I;+lA”I;+l 
4 If Q”+’ is small enough, set M = k + 1 and stop Otherwise, set 

k = k + 1 and go to step 2 

2.1 Selecting Coarse Grids and Defining Interpolation 

Step 2 is the axe of the AMG setup process The goal of the setup phase is to 
choose the set C of coarse-grid points and, fm each fine-glid point i E F = R-C, 
a small set C, c C of interpolating points Interpolation is then of the form 

We do not detail the construction of the interpolation weights wij, instead refer- 
ring the leada to [17] for det,ails 

An underlying assumption in AMG is that smooth ala is characterized by 
small residuals, that is, Ae Y 0, which is the basis for choosing coax grids and 
defining interpolation weights For simplicity of discussion hexe, assume that A 
is a symmetric positive-definite AZ-m&ix, with asi > 0, aii < 0 fol j # i, and 
Cuij > 0 

We say that point i depends on point j if acj is “lalge” in some sense, and 
hence, to satisfy the ith equation, the value of ui is affected mwe by the value 
of uj than by otha variables Specifically, the set of dependencies of i is defined 
by 

Si = j #i -nij 2 cxma+ai~) , 
t I 

(3) 

with a typically set to be 0 25 We also define the set ST = {j i E S,}, that 
is, the set of points j that depend on point i, and we say that ST is the set of 
influences of point i 

A basic pIemix of AMG is that relaxation smoothes the e~~cn in the direction 
of influence Heme, we may select C, = S, n C as the set of interpolation points 
fol i, and adhae to the following clitaion while choosing C and F: 

That is, if i is a fine point, then the points influencing i must eitha be coaxe 
points 01 must themselves depend on the coarse points used to interpolate ui 

The coax grid is chosen to satisfy two criteria We enface P3 in order to 
insure good intapolation However, we wish to keep the size of the coarse-grid 
as small as possible, so we desire that 
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P4: C is a maximal set with the proper@, that no C-point injluences 
anothw C-point 

It is not always possible to enfmce both critaia Hence, we enfmce P3 while 
using P4 as a guide iu coals-point selection 

AMG employs a two-pass process, in which the glid is first “colored”, pro- 
viding a tentative C/F choice Essentially, a point with the lagat number of 
influences (“influence count”) is colored as a C point The points depending on 
this C point are colored as F points Otha points influencing these F points 
ate mole likely to be useful as C points, so theil influence count is increased 
The process is repeated until all points are either C 01 F points Next, a second 
pass is made, in which some F points may be recolored as C points to ensure 
that P3 is satisfied Details of the coarse-glid selection algmithm may be found 
in [17], while a recent study of the efficiency and robustness of the algmithm is 
detailed in [7] 

Like many lineal solvas, AMG is divided into two main phases, the se&p 
phase and the solve phase Within each of these phases ale certain tasks that 
must be pamllelized to crate a paallel AMG algaithm They ale 

Setup phase: 
l Selecting the coarse grid points, ns+l 
l Construction of interpolation and restriction opelatols, It+l, $+I 
l Constructing the coatse-glid operator Ak’+’ = $+‘A”$+’ 

- Solve phase: 
l Relaxation on Aku” = f” 
l C&dating the residual rlc t f” - A%” 
l Computing the restriction f”+’ = $+I$ 
l Interpolating and rouecting u’ c uk + It+,&+l 

3 Parallelization Model 

In this wcnk we target massively paallel distributed memory architectures, 
though it is expected that the method will prove useful in other settings, as well 
Cunently, most of the taget platforms suppolt shaed memoty within clusters 
of plocessols (typically of size 4 or 8), although for patability we do not utilize 
this featme We assume explicit message passing is used among the processors, 
and implemetlt this with MPI [15] The equations and data are distributed to the 
processors using a domain-pnrtitioning model This is natulal for many problems 
of physics and engineering, where the physical domain is partitioned by subdo- 
mains The actual assignment to the processors may be done by the application 
code calling the solver, hy the glidding program, 01 by a subsequent call to a 
graph partitioning package such as Metis [12] The domain-partitioning stmtegy 
should not he confused with domain decomposition, which refers to a family of 
solution methods 

We use object-miented softwae design for parallel AMG One benefit of this 
design is that we can effectively employ kernels from other packages, such as 



PETSc [l] in seveml places throughout OUI code Intenally, we focus on a matrix 
object that generalizes the featues of “mattices” in widely-used packages We 
can write AMG-specific Ioutines once, fol a variety of matrix dat,a structures, 
while avoiding the necessity of reinventing widely available loutines, such as 
matrix-vu toI multiplication 

Most of the lequired operations in the solve phase of AMG are standard, as 
ale sevaal of the cole operations in the setup phase We list below the standad 
opaations needed by AMG: 

- Matrix-vector multiplication: used fol I&dual caknlation, fol intapolation, 
and lestliction (both use rectangular matrices, testliction mult,iplies by the 
transpose) Some pa&ages provide all of the above, while others may have 
to be augmented, although the coding is st~aightfolwad in these cases 

- Basic ite7atiue methods used for the smoothing step Jacobi 01 scaled Ja- 
cobi are most comnmn fm paxallel applications, but any iterative method 
provided in the parallel package could be applied 

- Gathe~ing/scattering processor boundmy equations used in the construction 
of the intapolation operators and in the construction of coaxe-gtid operators 
via the Galakin method Each plowssol must access “plocessol-boundary 
equations” staled on neighbming plocessom Because sin&t functionality 
is lequiled to implement additive Schwan methods, parallel pa&ages imple- 
menting such methods aheady plovide tools that can be modified to fulfill 
this lequilement 

4 Parallel Selection of Coarse Grids 

Designing a paallel algorithm fol the selection of the cease-grid points is the 
most difficult task in paallelizing AMG Classi< al AMG uses a two-pass algo- 
lithm to implement the heuristics, P3 and P4, that assue glid quality and 
contlol grid size In both passes, the algorithm is inherently sequential The fbst 
pass can be described as: 

1) Find a point j with maxima1 measue w(j) Select j as a G point 
2) Designate neighbors of j as F points, and update the measues of 

other nealby points, using lnnistics to insue glid quality 
Repeat steps 1) and 2) until all points ale eitha C 01 F points 

This algorithm is clearly unsuitable fox paallelization, as updating of measures 
occum after each C point is selected The second pass of the classical AMG 
algorithm is designed to enfmce P3, although we omit the details and refel the 
leader to [17] We can satisfy P3 and eliminate the second pass through a simple 
modification of step 2) 

Futha, we may allow fol parallelism by applying the following one-pass 
algorithm Begin by perfaming step 1) globally, selecting a set of C points, D, 
and then pelfolm step 2) locally, with each plocessot waking on some portion 
of the set D With different criteria for selecting the set D, and amed with 



various heuristics fca updating the nrighbols in 2), a family of algorithms may 
be developed The overall framework is: 

Input the n x IL matrix il” (level k) 
Initialize 

F=0, C=0 
vi E {l n}, 

w(i) einitial value 
Loop until ICI + IFI = n 

Select an independent set of points D 
Qj E D: 

C=CUi 
V k in set local to j, update w(k) 
ifw(lc)=O, F=FUk 

End loop 

4.1 Selection of the set D 

FOI the measue w(i), we use IS’\ + u(i), tl le number of points influenced by 
the point i plus a random numha in (0,l) The tandom numba is used as a 
mechanism for breaking ties between points with the same numba of influences 
The set D is then selected using a modification of a paallrl maximal independent 
set algorithm developed in [13, 11, 81 

A point j will be placed in the set D if w(j) > w(k) for all k that either 
influence or depend on j By construction, this set will be independent While our 
implementation selects a maximal set of points possessing the requisite plopelty, 
this is not necessaty, and may not be optimal An important observation is that 
this step can be done entirely in pax&l, provided each plocessol has access to 
the w values for points with influences that cross its plocessor boundaly 

4 2 Updating w(k) of neighbors 

Describing the heuristics fol updating w(k) is best done in terms of graph themy 
We begin by defining S, the auxiliary influence matk 

That is, S:i = 1 only if i depends on j The ith row of S gives the dependencies 
of i while the ith column of S gives the influences of i We can then folm the 
directed graph of S, and observe that a directed edge flom vertex i to vatex 
j exists only if Sij # 0 Notire that the directed edges point in the direction 
of dependence To update the w(k) of neighbors, WC apply the following pair of 
heuristics 



P5: Values at C points are not interpolated, hence, neighbors that in- 
fluence a C point ale less valuable as potential C points themselves 

P6: If k and j hoth depend on c, a given C point, and j influences k, then 
j is less valuable as a potential C point, since k can be interpolated 
f1om c 

The details of how these heuristics ale implemented ale: 

Vc E D, 
P5: 

Vj I Scj #a, (each j that influences c) 
;‘j’+y(i) - 1 (decuzment the measure) 

eJ (mnove edge cj from the glaph) 
P6: 

‘JiISjcf” (each j that depends on c), 
Sjc C 0 (remove edge jr from the glaph) 
V k I Skj # 0, (each k that j influences), 

if Sk, # 0 (if k depends on c), 
w(j) c w(j) - 1 (deaement the measure) 
Skj to (mnove edge kj from the graph) 

The heuristics have the effect of lowaing the measue w(k) fol a set of neighhas 
of each point in D As these mea~ues are loweled, edges of the graph of S are 
removed to indicate that certain influem es have aheady been taken int,o account 
Frequently the step w(j) + w(j) - 1 causes [w(j)] = 0 When this occms j is 
flagged as an F point 

Once the heuristics have been applied fol all the points in D, a glohal com- 
munication step is required, so that each processor has updated w values fol all 
neighbors of all theil points The entile process is then repeated C points are 
added by selecting a new set, D, from the vatices that still have edges attached 
in the modified graph of S This process continues until all n points have eit,ha 
been selected as C points 01 F points 

5 Numerical Experiments 

To test its effect on convergence and algorithmic scalability, we include a s&al 
implementation of the parallel coarsening algorithm in a standard sequential 
AMG solver Obviously, this does not test palallel efficiency, which must wait 
fol a full patallel implementation of the entile AMG algorithm 

Figme 1 shows the coax grid selated hy the parallel algorithm on a stan- 
dard test problem, the Q-point Laplacian operator on a legula glid This test is 
important because the glid selected by the standard sequential AMG algcnithm 
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Fig 1 Coarse grids for the sfmctu?ed-grid S-point Laplacian operator The dark circles 
are the C points Left: Glid selected by the standard algmithn Right: Grid selected by 
the parallel algorithm 

Fig. 2 Coarse grids for an unstructured grid The lar9e eixles me the C points Left: 
Glid selected by the standard algorithm Right: Grid selected by the parallel algorithm 
Graph connectivity is shown on the left, while the fdi digraph is shown on the light 

is also the optimal glid used in geometrir multigzid for this pmhlem Examining 
many such test problems on leg&u glids, we find that the paallel coarsening 
algorithm typically produces roase glids with lo-20% mole C points than the 
sequential algorithm On unstzuctuled gtids 01 complicated domains, this in- 
aease tends to he 40-50%, a.s may he seen in the simple example displayed in 
Figme 2 

The impact of the pamllel coalsming algorithm on convergence and scal- 
ability is shown in two figures Figule 3 shows the convetgence factor fat the 
Q-point Laplacian opelatol on legulal glids ranging in size from a few hundIed 
to nearly a half million points Several different Lhoices for the smootha and the 
parameta N ale shown In Figue 4 the same tests me applied to the Q-point 
Laplacian opemtor fox anisot~opic glids, whele the aspect ratios of the under- 
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Fig 3 Convergence factors for parallel AMG for the S-point Laplaeian 

lying quadrilateral finite elements ale extremely high In both figures, we see 
that convergence factas for the glids chosen by the parallel algorithm are sig- 
nificantly lager than standad AMG ( s h own as “AMG” in Figure 3, not shown 
in Figue 4), although the paallel algorithm still ploduce solutions in a leason- 
able numhel of itetations Of mcxe concmn is that the convagence factms do 
not scale well with increasing plohlem size We h&eve that this may be caused 
by choosing too many coarse glid points at once, and that simple algorithmic 
modifications mentioned below may hnptove OUI results 

Figwe 5 shows the glid and ape&m complexities fo1 the parallel algorithm 
applied to the Q-point Laplacian operato Grid complexity is the total numba 
of glid points, on all glids, divided by the numhel of points on the o@ml glid 
Operator complexity is the total number of non-zeros in all operators A’,A’, 
divided by the number of non-zeros in the original matrix Both the glid and 
opcratol complexities genaated using by the paallel algorithm ale essentially 
constant with increasing problem size While slightly larger than the complexities 
of the sequential glids, they nevatheless appeal to be scalable 

The fxunework described in Section 4 peunits easy modification of the al- 
gorithm For example, one may altw the choke of the set D of C points We 
believe that t,he convc~gence facto1 degmdation shown in ow results may he due 
to selecting too many hoarse grid points One possibility is to choose the minimal 
numba of points in D, that is, one point pa plowssol This amounts to running 
the sequential algmithm on each processor, and there a rumba of diffaent ways 
to handle the intaplocessor houndalies One possibility is to roalsen the pro- 
cesso~ boundary equations first, using a pamllel MIS algorithm, and then tleat 
each domain independently Another option is to lun the sequential algorithm 
on each processor ignoring the nodes on the boundary, and then patch up the 
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Fig. 4 Convergence 7ates for parallel AMG for the anisotropic grid problem 

glids on the processor boundaries 

6 Conclusions 

Modan massively patallel computing requires the use of scalable linear solvas 
such as multigrid FOI unstructured-grid problems, howeva, scalable solvers have 
not been developed Paallel AMG, when developed, pronkcs to be such a solva 
AMG is divided into two main phases, the setup phase and the solve phase The 
solve phase can be parallelized using standad techniques common to most papal- 
lel multigzid codes However, the setup phase coascning algorithm is inherently 
sequential in nature 

We develop a family of algorithms fez selecting coa~e glids, and prototype 
one memba of that family using a sequential rode Tests with the prototype 
indicate that the quality of the selected coame glids are sufficient to maintain 
constant complexity and to provide convergence even fol difficult anisotlopic 
problems However, convagence lates are highel than fol standad AMG, and do 
not scale well with problem size We believe that this deglndation may be caused 
by choosing too many coarse grid points at once, and that simple algorithmic 
modifications may improve om results Exploration of these algorithm variants 
is the subject of our cunent lesealrh 
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