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Abstract 

Computational science problems with adaptive meshes involve dynamic load balancing when implemented 
on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run 
time. We present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles 
of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. SHARP 
partitions a graph from scratch, requiring no partition information from previous iterations. Two types of par- 
allelism have been exploited in S-HARP, fine-grain loop-level parallelism and coarse-grain recursive 
parallelism. The parallel partitioner has been implemented in Message Passing Interface on Cray T3E and 
IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 ver- 
tices into 256 partitions in 0.2 seconds on a 64-processor Cray T3E. S-HARP is much more scalable than other 
dynamic partitioners, giving over 15-fold speedup on 64 processors while ParaMeTiS1.0 gives a few-fold 
speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partition- 
ers ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices. 
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1 Introduction 
Computational science problems often require unusually large computational capabilities for real world applications. 
A recent survey indicates that molecular dynamics in computational biology requires a minimum of teraflops to tens 
of petaflops [15]. The survey continues reporting that computational cosmology needs tens of exaflops. The only way 
to satisfy these computational demands is to use large-scale distributed-memory multiprocessors. Intel ASCI Red and 
IBM ASCI Blues consisting of thousands of processors are designed specifically to satisfy such computational de- 
mands [ l]. One of the main objectives of the Berkeley Millennium project which consists of thousands of processors 
is to prepare for such computational demands for present and in the near future. 

Computational science problems are typically modeled using structured or unstructured meshes. The meshes are 
partitioned at compile time and distributed across processors for parallel computation. These meshes change at runtime 

to accurately reflect the computational behavior of the underlying problems. When these large number of processors 

are used, load balancing, however, becomes a critical issue. Some processors will have a lot of work to do while others 
may have little. It is imperative that the computational loads be balanced at runtime to improve the efficiency and 

throughput. Runtime load balancing of computational science problems typically involves graph partitioning. Fast 
runtime mesh partitioning is therefore critical to the success of computational science problems on large-scale distrib- 
uted-memory multiprocessors. 

Runtime graph partitioning needs to satisfy several criteria, including execution time, imbalance factor, and edge 
cuts to reduce communication between processors. Several dynamic mesh partitioning methods have been recently in- 
troduced to solve this runtime mesh partitioning problem. Among the dynamic partitioning methods are Jostle [21], 
ParaMeTiS [9], Incremental Graph Partitioning (which we will call IGP in this report) [14], and HARP [18]. These 
methods can be classified into two categories based on the use of initial partitions or runtime partitions between suc- 
cessive iterations. The f i s t  group simply partitions from scratch, requiring no runtime or initial partitions. HARP 
belongs to the first group. The second group relies on the initial or runtime partitions. Jostle, ParaMeTiS and IGP be- 
long to this second group. 

Jostle and ParaMeTiS employ a multilevel method which was introduced by Barnard and Simon in MRSB [2] and 
by Hendrickson and Leland in Chaco [7]. The idea behind the multilevel method is to successively shrink (coarsen) 
the original mesh in such a way that the information of the original mesh is preserved in the course of shrinking. When 
it is sufficiently small, the original graph will be partitioned into a desired number of sets (sets and partitions are used 
interchangeably). The partitioned sets are then uncoarsened to bring the partitions to the original graph. Jostle intro- 
duces a diffusion scheme to give a global view of the original mesh. At the coarsest mesh, vertices are moved (diffused) 
to neighboring partitions to balance the coarse graph. ParaMeTiS performs similar multilevel operations as Jostle. IGP 
introduced by Ou and Ranka is based on the spectral partitioning at compile time and linear programming at runtime 
for repartitioning. 

The traditional argument against partitioning from scratch is that it is computationally expensive and involves an 
unnecessarily large amount of vertex movement at runtime. However, this argument has been answered in the JOVE 
dynamic load balancing framework by Sohn, et. al [19] and the fast spectral partitioner HARP by Simon, Sohn, and 
Biswas [18]. The sequential partitioner HARP demonstrated that it can partition from scratch a graph of over 100,000 
vertices into 256 sets in less than four seconds on a single processor SP2. This fast execution time is three to five times 
faster than the multilevel partitioner MeTiS [9]. The idea behind HARP is spectral partitioning and inertial partitioning. 
Spectral partitioning first introduced by Hall in 1970 [6] was later popularized by Simon [17] (the K-L random swap- 
ping method was also introduced in 1970 [lo]). The idea behind such a spectral method is to untangle the given graph 
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in an eigen space spanned by the eigenvectors of vertices. Hall demonstrated in his 1970 paper that complex graphs 
can be effectively untangled in the eigen space spanned by one to many eigenvectors of the Laplacian matrix of the 
vertices. 

This report introduces the dynamic partitioner S-HARP. S-HARP uses the same principles as HARP but in parallel. 
It can run on any parallel machine which supports Message Passing Interface. One of the advantages of using S-HARP 

is that it can partition in any condition, regardless of the number of processors and partitions. S-HARP does not require 
any parameter to tune for performance improvement. No local optimization is employed in the partitioner. S-HARP 

requires no initialization, except to find the eigenvectors of the graph under consideration for runtime partitioning. The 
imbalance factor of S-HARP is guaranteed to be at most one vertex each time a graph is divided into two sets, provided 
all vertices are equally weighted. When there is an even number of vertices each of which has an equal weight, S-HARP 
guarantees to partition the vertices into exactly half, leaving zero imbalance factor. When the number of vertices is 
odd, there will be a maximum of one vertex difference among two partitions. The worst imbalance factor is bounded 
by log S, where S is the total number of partitions. Therefore, imbalance factor is a minor issue in S-HARP. 

The paper is organized as follows: In section 2, we present the underlying concepts of S-HARP by giving a running 
example, the “Roach” mesh described in and used by Guattery and Miller [ 5 ] ,  which has been used as a counterexam- 
ple that spectral partitioners are not effective for some meshes. Section 3 presents parallel aspects of the S - w  
algorithm. We first present the fallacy of recursion, indicating that recursion is not very straightforward to parallelize. 
To overcome the fallacy of recursion, S-HARP employs two types of parallelism, namely recursive parallelism and 
fine-grain function-level parallelism. Section 4 presents experimental results of six meshes on the two distributed- 
memory multiprocessors, including Cray T3E and IBM SP2. Experimental results are presented along with the number 
of edge cuts, the execution time, and the number of processors. Section 5 compares the performance of three dynamic 
partitioners S-HARP, Jostle, and ParaMeTiS. The last section concludes this report on parallel dynamic partitioner S -  
HARP with some future directions on dynamic graph partitioning. 

2 The Ideas of the S-HARP Dynamic Partitioner 
The basic ideas behind S-HARP are presented in this section. The spectral feature is f i t  explained, followed by the 
inertial feature. The Roach mesh which was used as a counterexample of spectral method is used as a running example. 

2.1 The spectral basis 
S-HARP is a combination of two methods: Laplacian-based spectral method and coordinate-based inertial method. 
The spectral method constructs a d-dimensional eigen space to embed a graph of n dimensions, where d is much small- 
er than n. Inertial method finds a d-1 dimensional hyperplane to separate the embedded graph into half. Laplacian- 
based partitioning method was first introduced by Hall in 1970 [6] .  The method precisely defines the relationship be- 
tween the connectivity of vertices and the eigenvectors of a Laplacian matrix. The Laplacian matrix L is defined where 
the diagonal entry dii is the connectivity of vertex vi while other entry dij is -1 if there is a connection between two 

vertices vi and vj; do = 0 otherwise. Eigenvectors of the Laplacian matrix L help transform a graph represented in a 

Cartesian coordinate into a graph represented in an eigen space spanned by eigenvectors. 
For a graph G = (vo,v1, ..., vn-l) of n vertices, S-HARP constructs a d-dimensional eigen space spanned by d eigen- 

vectors EO,...,Ed-l. The dimension of eigen space d is much smaller than the number of vertices n, typically a few to 

tens for practical purposes. An eigenvector E ,  i = 0 .. d-1, has n entries Ei,O,...,Ei,n-l, where Eij corresponds to vertex 
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V J  for j  = 0 ... n-1. Each eigenvector of dimension n contains information of all the n vertices in the original graph but 

to a limited extent. Together with other d-1 remaining eigenvectors, a vertex can be located in the d-dimensional eigen 
space. To be more precise, the location of a vertex vj can be accurately defined by d eigen entries hj, ..., Ed-l,j each of 

which is derived from a different eigen vector. As we have shown earlier in the sequential HARP, the location of a 
vertex can be more accurately defined as d increases. 

The traditional argument against spectral graph partitioning is that there exists a class of graphs for which spectral 
partitioners are not suitable. Figure 1 shows a “roach” mesh with 16 vertices used by Guattery and Miller in [5 ] .  The 
argument in the report is that the spectral partitioner such as S-HARP will partition the roach mesh into two sets across 
two antennas using the dotted line. Should this be true, the partitioner will give two partitions with three components: 
The top partition will have two disconnected components each of which has four vertices while the bottom partition 
will have a single connected component of eight vertices. This type of partitioning is highly undesirable and can often 
be disastrous for large graphs since the top partition has two disconnected components. Putting this into perspective, 

the disconnected components can cause unnecessary communications when each partition is mapped to a processor in 
a multiprocessor environment. To identify if this is indeed the case for Laplacian-based partitioners, we plot the roach 
mesh in a 2-dimensional eigen space. 

Figure l(b) shows the Laplacian matrix D for the mesh shown in Figure l(a). Again, diagonal entry dii is the de- 

gree of vertex vi while other entry dii is -1 if there is a connection between two vertices vi and vj; do = 0 otherwise. 

Figure l(c) shows the first three eigen vectors of the matrix D. The f i s t  eigenvector which is an orthonormal vector 

is discarded since it has no directional information. The second and third vectors, El and E2, have directional informa- 

tion and are used for graph partitioning. The plot shown in Figure l(d) is exactly based on these two eigenvectors. The 
16 vertices of the roach mesh are plotted in the two-dimensional space spanned by the two eigenvectors. The x-axis 
shows the second eigenvector El  while the y-axis shows the third eigenvector E2. These two vectors serve as an eigen 
coordinate for the 16 vertices. 

Given the eigen plot shown in Figure l(d), partitioning the roach graph is now straightforward. The simplest way 
is to partition along the first eigenvector El  (x-axis); The eight vertices, 0..7, of left half will be partition 0 while the 
eight vertices, 8..15, of right.half will be partition 1. The vertical axis passing through x=O and orthogonal to the x-axis 
is all it needs to partition the graph into half. The resulting partition gives the minimal number of edge cuts while all 
the vertices in each partition are connected. The locations of vertices 7 and 8 are not very clear in the figure and may 
appear to cause a potential problem for partitioning. However, they are due to the plotting precision and are numeri- 
cally different. Should there be ties after the graph is partitioned into half using El ,  spectral partitioners will spend 
little time resolving such cases. The second eigenvector E2 (y-axis) will be used as a tie-breaker. Should there still be 
ties after using E l  and E2, the fourth eigenvector E3 will be used as a tie-breaker. The example graph has no ties after 
the first partition using El  and hence, it is not necessary to use E2 to break ties. 

2.2 The inertial basis 

For small meshes like the one shown in the previous section, it is clear that a single eigenvector can clearly partition a 
graph into two connected components with the minimal edge cuts. For meshes with many ties in the eigen space, a few 
additional eigenvectors are necessary to break ties that often result from numerical precision. For large complex 
graphs, however, it is often not obvious if partitioning using one to several eigenvectors is effective. This is where the 
inertial feature of S-HARP is used to further clarify the partitioning process. 
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0 0 0 0 0 0 0 - 1 2 - 1 0 0 0 0 0 0  
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0 0 0 0 0 0 0 0 0 0 0-1 2-1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0-1 2-1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0-1 2-1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 1 

EO 
El 
E2 

Figure 1: The spectral basis of S-HARP. S-HARP separates the roach graph into two connected components us- 
ing the vertical line as opposed to the report that it will partition the graph using the horizontal dotted line. The 
resulting partitions give the minimal edge cuts while keeping all the vertices in each partition connected. 

0 1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 
0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 
0.447 0.401 0.314 0.193 0.053 0.015 0.004 0.001 -0.001 -0.004 -0.015 -0.053 -0.193 -0.314 -0.401 -0.447 
0.347 0.294 0.196 0.069 -0.069 -0.196 -0.294 -0.347 -0.347 -0.294 -0.196 -0.069 0.069 0.1% 0.294 0.347 

The main idea of inertial partitioning is to find the center of inertia of vertices and decide the partition for each 
vertex according to the inertial center. Inertial partitioners typically use geometric coordinate information of a mesh 
to find the center of inertia. S-HARP uses eigen coordinate information to do so. We continue to use the roach mesh 
to explain the inertial feature of S-HARP. Figure 2 illustrates how the center of inertia of the 16 vertices helps partition 
the vertices. Given the 16 vertices represented in the 2-d space spanned by the two eigenvectors, E l  and E2, S-HARP 
finds a line L which separates the vertices into half (if three vectors are used, S-HARP will find a plane to separate the 
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Figure 2: Inertial partitioning is to find the line L which minimizes the sum of squares of distance di, i=O.. 15. 

vertices into half). The line L is computed in such a way that the sum of squares of distance di, d t ,  i=0..15, is min- 

imized. Once the line is located, the rest is straightforward. The line M that passes through the center of inertia (x,,y,) 

and is orthogonal to L separates the vertices into half. Those vertices on the right hand side are projected to partition 
0 while those on the left hand side are projected to partition 1, or vice versa. 

When the vertices are uniformly weighted, the partitioning is as simple as above. However, S-HARP assumes 
weighted vertices, Le., vertices can have different computational intensity due to mesh adaption. This adds an extra 

step of sorting to the above procedure. Finding the lines L and M is the same as above in a way to minimize x d t ,  

i=0..15. It can be shown that finding the line L is equivalent to finding the f i s t  eigenvector of a 2x2 inertial matrix R, 

derived from x dt, i=0..15 [20]. However, projection will be different since weighted vertices will be projected to L 

according to their weight. A simple splitting is not possible as this weighted projection has changed the center of inertia 
which was originally designed for a uniform weight. The projected vertices are, therefore, sorted to find the new me- 
dian. The last step divides the sorted vertices into half with respect to the new median. Or, the vertices can be divided 
into any desired number of partitions. 

Figure 3 shows how S-HARP partitions the roach graph. Figure 3(a) indicates that the inertial line L is exactly the 
same as the x-axis of Figure 1 while the orthogonal line M is exactly the same as the y-axis of Figure 1. Figure 3(b) 
shows the vertices projected to line L. Sorting is not necessary since all the vertices have the same weight. The line M 
passing through the center of inertia splits the vertices into half. The right hand side, labeled partition 0, has 8 vertices, 
v0..v7 while the left hand side, labeled partition 1, has 8 vertices, v8..v15. The partition gives 4 edge cuts, which is the 

optimal number of edge cuts for connected partitions. 
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Figure 3: Inertial partitioning: (a) finding the two lines L and M, (b) projection of vertices to L, sorting on the pro- 
jected values, and splitting with respect to M. Note that projected vertices in (b) are scaled for readability. 

2.3 Summary of S-HARP in the context of dynamic partitioner 

The internal working of S-HARP for a graph with weighted vertices is summarized below: 

(a) Find k eigenvectors of the Laplacian matrix of a graph. For practical purposes, k = 10 eigenvectors are typi- 
cally used [ 19,201 regardless of the number and size of vertices. For the roach mesh where k = 2 eigen vectors 
are used, a separator of 1-dimensional line was used. For k = 3 three vectors, a separator of 2-dimensional 
plane will be needed. 

(b) To prepare for finding a (k-1)-dimensional hyperplane L, compute the inertial distance of the vertices in the 
eigen space spanned by k eigenvectors. 

(c) Find a hyperplane L. This is equivalent to finding the first eigenvector of a k x k inertial matrix R derived 

from the minimization of d?, i=O..V-1 , where di is an inertial distance from vertex vi to L and Vis the num- 

ber of vertices. 

(d) Project individual vertices to the principal inertial direction L according to their weights. 
(e) Sort the vertices according to the projected values. 
(f) Split the sorted vertices into half by using the orthogonal line M that passes through the median point of the 

principal inertial direction L. 

The main objective of developing S-HARP is to dynamically partition meshes. As we stated earlier in the,intro- 
duction, a computational mesh changes at runtime due to refinement andor coarsening. S-HARP assumes that the 
topology of the underlying mesh remains the same but the computational intensity of each vertex changes at runtime. 
When a mesh is refined, some vertices will split into several vertices. This refinement can be modeled by adjusting the 
computational weight of the vertex which is to be refined. This adjustment of computational intensity leads to an im- 
portant observation that the original eigenvectors which retain the topology of the original mesh remain the same. 
Since the original mesh remains the same but the vertex weights change at runtime, it is not necessary to re-compute 
the eigenvectors at runtime. Therefore, step (a) is performed only once for the initial mesh. The parallel partitioner 
discussed in the following section will be concerned only for the remaining five steps. 

3 The S-HARP Parallel Dynamic Partitioner 
Parallel aspects of S-HARP are presented in the section. The fallacy of recursive parallelism is first presented to illus- 
trate that recursive parallelism gives very limited speedup. The two types of parallelism used in S-HARP are described, 
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which are coarse-grain recursive parallelism and fine-grain function-level parallelism. As explained briefly above, S- 
HARP assumes the eigen vectors of the meshes are given since the topology of a mesh does not change but the com- 
putational intensity does. Since there is no change in the topology, the initial eigenvectors needed to be computed once 
and for all at compile time. The parallel partitioner addresses only the inertial basis. 

3.1 The fallacy of recursive parallelism 

Parallelization of HARP 'appears' to be simple and straightforward because HARP is recursive. A key misconception 
of recursion, however, is that it 'appears' to be naturally parallel. In reality, it is not highly parallel until each processor 
has a task to perform. Given P processors, HARP will run log S iterations to obtain S sets (or partitions). In the first 
iteration, there is only one task to perform. Hence one and only one among P processors is busy performing this task. 
This gives a poor processor utilization of UP. At the end of the first iteration, the mesh is divided into two partitions. 
Each partition is assigned to a processor. In the second iteration, two processors independently perform mesh parti- 

tioning on the given submesh. Again, the second iteration sees only two processors busy working among P processors, 

resulting again in a poor utilization of 2/P. Figure 4 shows the fallacy of recursive parallelism on eight processors with 
three iterations. To simplify the discussion, no communication is assumed in the figure. 

Po 

P1 

P2 

P3 

P4 

P5 

P6 

P7 

1 
1 

I- iteration 0 iteration 1 1. iteration2 ,I - -  - -  c 

Figure 4 Fallacy of recursive parallelism. The shaded areas indicate processors that are busy. 

The shaded areas indicate processors that are busy while the hollow areas indicate processors that do nothing. It 
is clear from Figure 4 that iteration 1, the most time consuming step, is performed by one processor while the other 
seven processors do nothing. The maximum speedup based on the recursive parallelism, therefore, is bound by log P. 
To be more precise, the speedup based on recursive parallelism is 

n - - 'sequential - n Speedup = - 
n log P 

1 + n - l o g P + 1  'parallel l o g p  

P 
k =  1 k = l o g P  k = l  

n - - 'sequential - n Speedup = - 
n log P 

1 + n - l o g P + 1  'parallel l o g p  

P 
k =  1 k = l o g P  k = l  

where n is the number of iterations. For n = log P, the speedup reduces to 

log P Speedup = - 
logP 

1 

k =  1 
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As P becomes large, the maximum possible speedup is bound by log P. The processor utilization is also very low, 
as is obvious from Figure 4. It is therefore imperative that the algorithm needs parallelization other than in the task- 
level recursion. 

inertia 1 I p roject I sort I inertia I I pr oject I sort I inertia 1 1 pr oject I sort I 
4 L A  L A  r- iteration 0 iteration 1 iteration 2 

3.2 The parallel algorithm 

S-HARP exploits parallelism both in recursive and function-level. Figure 5 illustrates how S-HARP works on eight pro- 
cessors. Three of the five steps of S-HARP have been parallelized, which are inertial computation, projection, and sort. 

PO 

P1 

P2 

P3 

P4 

P5 

P6 

PI 

Figure 5:  Parallel HARP running on eight processors. The figure is not drawn to scale. 

In iteration 0, all the eight processors work together to find the inertial distance of the unpartitioned vertices. This 
step is expensive since it involves all the unpartitioned vertices and their original eigenvectors. Each processor finds 
an inertial matrix of VIP vertices. The dimension of inertial matrix is fixed to 10. At the end of the computation, the P 
inertial matrices each of which is 10x10 are reduced to a single inertial matrix of 10x10, followed by broadcasting. 
The second step of finding the eigenvectors of the inertial matrix is relatively trivial (typically 1-3% of the total com- 
putation time) and hence is not parallelized. The third step, where the vertex eigen coordinates of the unpartitioned 
vertices are projected onto the major inertial direction, is relatively expensive and hence has been parallelized. Each 
processor fiids the projected coordinate of VIP vertices. Unlike in the first step where P inertial matrices are reduced 
to a single matrix, P vectors each of which is the size of VIP are gathered in one processor to form a vector of size V,  
followed again by broadcasting. Sorting is the major step in S-HARP. Bitonic sorting is used to parallelize the sorting 
step. In particular, a balanced bitonic sorting is used in the implementation, which always sorts the elements in an as- 
cending order. The final step, where the unpartitioned vertices are divided into two sets, requires a negligible amount 
of time and is thus not parallelized. 

After the graph is partitioned into two sets, they are stored across two groups of processors. The first partition is 
copied to processors 0 to 3 while the second partition is copied to processors 4 to 7. This is where recursive parallelism 
is exploited. Two groups of processors operate independently. The group of PO..P3, or GO, partitions the first set, SO 
into two sets while the group of P4..P7 (or G1) partitions the second set, S1, into two sets. Within each group all pro- 
cessors work together to perform further partition as done in iteration 0. For example, PO..P3 perform the inertial step 
in parallel, exploiting fine-grain function-level parallelism. If the number of desired partitions is greater than the num- 
ber of processors, all the eight processors work independently after iteration 2. Recursive parallelism is fully exploited 
as fine-grain parallelism is not necessary from this point on. 
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4 Performance of S-HARP 
4.1 Serial performance 

Both the serial version HARP and the parallel version S-HARP have been implemented in Message Passing Interface 
(MPI) [ 113 on Cray T3E and IBM SP-2. The Cray T3E-900 installed at the NERSC, Lawrence Berkeley National Lab- 
oratory and the IBM SP-2s installed at the NASA Ames and Langley Research Centers are used for experimentation. 
Six test meshes are used in this study which are listed in Table 1. A brief description of the meshes is given in [18]. 

SPIRAL LABARRE STRUT BARTH5 HSCTL FORD2 
# of vertices V 1200 7959 14,504 30,269 31,736 100,196 
#of edges E 3191 22,936 57,387 44,929 142,776 222,246 

Table 1: Characteristics of the six test meshes used. 

Two parameters characterize the performance of all graph partitioning algorithms: the number of cut edges C and 

the total partitioning time T. The sequential HARP1.0 results are compared with the MeTiS2.0 multilevel partitioner 
(HARP1.0 will be released for public use in the near future). MeTiS2.0 results are drawn from the early report [18]. 
Since the numbers of edge cuts are the same as before, they are not repeated here. However, the improved sequential 
HARP version gives substantially different execution times, we compare the new execution times with MeTiS2.0. Ta- 
ble 2 lists the execution times of HARPl.0 and MeTiS2.0 on a single-processor SP2. 

# of 
sets 

2 
4 
8 

16 
32 
64 

128 
256 

SPIRAL I LABARRE 

HARPl 
0.005 
0.009 
0.014 
0.020 
0.029 
0.043 
0.067 
0.112 

0.113 
0.145 

MeliS2 
0.10 
0.22 
0.33 
0.50 
0.70 
0.90 
1.18 
1.56 

STRUT BARTH5 

HARP1 MeTiS2 HARPl MeliS2 
0.050 0.19 0.105 0.28 
0.097 0.42 0.203 0.60 
0.146 0.65 0.305 0.88 
0.196 0.92 0.408 1.21 
0.249 1.22 0.513 1.59 
0.306 1.65 0.623 2.08 
0.376 2.17 0.745 2.70 
0.465 2.87 0.887 3.29 

HSCTL f0rd2 

HARPl MeTiS2 HARPl MeTiS2 
0.110 0.48 0.352 1.18 
0.213 1.00 0.684 2.40 
0.320 1.84 1.023 3.59 
0.426 2.24 1.360 4.78 
0.533 2.93 1.698 5.92 
0.646 3.76 2.040 7.50 
0.772 4.90 2.391 9.23 
0.916 5.97 2.761 11.35 

Table 2: Comparison of the execution times in seconds on a single-processor SP2. 

Experimental results in Table 2 show that HARP1.0 performs approximately three to five times faster than 
MeTiS2.0. All the HARPl results are based on 10 eigenvectors. 

4.2 Parallel performance 

Table 3 shows the execution times for Ford2 on T3E and SP2 with 1 to 64 processors. These results are plotted in Fig- 
ure 6. S-HARP can now partition a mesh of over 100,000 vertices in 0.2 seconds on a 64-processor T3E. 

P, # of 
lrocesson 

1 
2 
4 
8 

16 
32 
64 

Number of partitions S on T3E Number of partitions S on SP2 

2 
0.358 
0.230 
0.154 
0.123 
0.104 
0.090 
0.088 

- 4 
0.827 
0.466 
0.290 
0.214 
0.168 
0.140 
0.137 

- 8 
1.290 
0.699 
0.406 
0.283 
0.212 
0.168 
0.159 

- 16 
1.740 
0.927 
0.520 
0.340 
0.248 
0.189 
0.180 

- 

- 

- 
32 

2.183 
1.143 
0.629 
0.395 
0.275 
0.201 
0.188 

- 
- 

64 
2.526 
1.318 
0.716 
0.438 
0.296 
0.215 
0.194 

- 
- 

128 
2.833 
1.472 
0.792 
0.476 
0.313 
0.223 
0.198 

- 
- 

256 
3.117 
1.617 
0.866 
0.513 
0.330 
0.230 
0.202 

- 
- 

2 
0.352 
0.244 
0.186 
0.158 
0.140 
0.127 
0.141 

- 
- 

4 
0.684 
0.407 
0302 
0.244 
0.209 
0.189 
0.198 

- 
- 

8 
1.023 
0.577 
0.384 
0.301 
0.262 
0.234 
0.239 

- 

Table 3: Partitioning times of FORD2. 

- 
16 

1.360 
0.745 
0.469 
0.348 
0.292 
0.261 
0.269 

- 
- 

32 
1.698 
0.915 
0.553 
0.389 
0.315 
0.275 
0.279 

- 
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Note the diagonal timing entries in bold. The execution times decrease gradually from the upper left comer to the 
lower right comer, with the exception of P = S = 2. This is a unique feature S-HARP possesses among dynamic parti- 
tioners. These entries will be used to compare with other dynamic partitioners in the later section. Figure 6 is provided 
to illustrate the effectiveness of S-HARP. Figure 6 shows that the execution time does not logarithmically increase as 
the number of partitions increases logarithmically. 

h 

s 1 :  

.$ 
8 .$ 
8 0.1 
W 

0.01 

10 
(a) Ford2 on T3E 

f3- P=2 P=32 
-4- P=4 -B- P=64 
-4- P=8 

(a) on T3E with 64 processors - Ford2 100196 222246) - Bad15 (30269,44929) 
-8- Strut (14504,57387) 

-4- Hsctl(!31736,lb776) 

-€J- P=l + P=16 

10 

(b) on SP2 with 64 processors 

1 :  

10 

1 

0.1 

(b) Ford2 on SP2 

1.01 10 100 
Number of partitions 

Figure 6: Relation between partitions and the number of processors on T3E and SP2. The plots are in log scale. 

The T3E results clearly show that the total execution time is not proportional to the number of partitions. For ex- 
ample, consider Figure 6(a). The bottom line which shows the results on 64 processors indicates that as the number of 
partitions is increased to 256 from two, the execution time has risen only slightly more than twice the time for 2 par- 
titions, i.e., 0.088 sec to 0.202 sec. This small increase indicates that even a larger number of partitions over 256 will 
not cost substantial computation time. A similar pattern is also seen for SP2 in Figure 6(b). When P=64, the SP2 par- 
titioning time for 256 partitions has risen to 0.299 sec from 0.141 sec for 2 partitions, resulting in approximately twice 
the time for 2 partitions. 

Figure 7 confirms the above observation for now four different meshes. Obtaining a very large number of parti- 
tions on 64 processors can be trivial in terms of computational cost, as shown in Figure 7. Results for all the meshes 
show that the partitioning times are relatively constant in spite of the logarithmic increase in the number of partitions. 
This relatively constant execution time is possible because the recursive parallelism is in full effect when each of the 

10 

h 
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.$ 
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64 processors obtains a submesh to partition. For S=256 and P=64, the first 6 iterations will see much communication 
to exploit functional level parallelism to overcome the fallacy of recursion (Figure 5). However, for the remaining two 
iterations, there will be no communication, all the processors working completely independently. Therefore, the exe- 
cution times remain relatively constant once all processors each get a submesh to partition. 

4.3 Scalability of S-HARP 
Figure 8 summarizes the scalability of S-HARP. T3E has given over 15-fold speedup on 64 processors. The speedup 
of 15 may be considered modest considering the parallelization efforts expended. However, graph partitioning is 
known to be difficult to parallelize especially when the parallel partitioners perform very fast, partitioning 100,000 
vertices in 0.2 seconds. In fact, partitioners such as ParaMeTiS1.0 give very modest speedup. For the Spiral mesh, 
ParaMeTiS1.0 gives the speedup of 0.133/0.099 = 1.3 on 64 processors [13]. For the HSCTL mesh with V=31736, 
E=142776, ParaMeTiS1.0 gives the speedup of 1.81210.676 = 2.7. For the mesh Ford2, ParaMeTiS1.0 performs worse 

than a single processor, giving the speedup of 0.742/0.919 = 0.81. Comparing the speedup results with ParaMeTiS1.0, 
S-HARP simply outperforms as it gives over 15-fold speedup. Results for the Jostle dynamic partitioner for the test 
meshes are not available and could not be compared in this report. 

25 25 
128 partitions 

-+- BARTH5 (30269,44929) 

'0 8 16 24 32 40 48 56 64 
Number of processors 

20 

15 

10 

5 

0 

256 partitions 

8 16 24 32 40 48 56 64 
Number of processors 

Figure 8: Speedup on T3E. 

While S-HARP is much more scalable than other dynamic partitioners such as ParaMeTiS1.0, its 16-fold speedup 
on 64 processors can be still improved. The main reason for the modest speedup is due to the fact that the current ver- 
sion of S-HARP is not crafted for performance. The major source of improvement is the sorting step. The current 
version takes approximately half the time in sorting. Several solutions are currently being undertaken to reduce the 
sorting time and the overall parallel partitioning time. 

5 Comparison of S-HARP with Other Dynamic Partitioners 
The performance of S-HARP is compared against two other dynamic partitioners, ParaMeTiS1.0 [9] and Jostle [21]. 
Jostle comes with two different versions: a multilevel version Jostle-MD and Jostle-D. Comparisons are made in terms 
of execution time and edge cuts. The execution results of ParaMeTiS and Jostle are provided by Leonid Oliker of FU- 
ACS at NASA Ames [13]. Figure 9 plots the results of S-HARP, ParaMeTiS, Jostle-MD, and Jostle-D. The x-axis 
indicates the number of processors and the number of partitions. For example, 64 refers that 64 processors partition 
the mesh into 64 sets. This restriction was due to MeTiS and Jostle since they require the number of partitions to be 
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Figure 9: Comparison of dynamic partitioners on SP-2. 

the same as the number of processors, Le., one partition per processor. S-HARP does not impose such a restriction. It 
can partition any number of partitions on any number of processors, as listed in Table 3. 

The performance of S-HARP in terms of edge cuts is comparable to the other three. Unlike the other partitioners, 
S-HARP produces exactly the same solution quality, regardless of the number of processors. The performance of S- 
HARP in terms of edge cuts is presented in detail in [18]. S-HARP does not perform local optimization as done in 
ParaMeTiS and Jostle. If local optimization is employed at the expense of slightly increased computation time, the 
partition quality will improve to the level of MeTiS and Jostle-MD. The reason we stress “slightly” is because S-HARP 

will not randomly optimize the partitions. S-HARP sorts vertices in terms of their projected locations on the dominant 
inertial direction in the eigen space spanned by the vertices. Local optimization will be performed where the vertices 
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are divided into two sets since errors come mostly from numerical precision. Hence, local optimization in the area 
where there are a lot of ties due to numerical precision will likely improve the partition quality. Partition quality can 
also be improved by using more eigenvectors. The number of eigenvectors used in this report is 10. If the number of 
eigenvectors is increased to 20, the performance will improve as presented in [ 181 at the expense of increased execu- 
tion time. However, we have not performed local optimization since fast execution is more important in dynamically 
changing computations than the highest possible partition quality. 

It is clear from Figure 9 that S-HARP outperformed the other two dynamic partitioners in terms of execution time. 
It is often difficult to obtain high performance for a small problem since there is not much work to perform. However, 
the results indicate that S-HARP is six to 10 times faster than ParaMeTiS and Jostle for the very small mesh Spiral. For 
large meshes, S-HARP still performs three to 10 times faster than ParaMeTiS and Jostle. The performance of S-HARP 

is consistent throughout different sizes of meshes. 
The performance of S-HARP is better when the number of processors is large. For 64 processors, S-HARP is five 

times faster than ParaMeTiS and 10 times faster than Jostle. This clearly suggests that when a large number of proces- 
sors is used, s-HARP can be the choice among parallel dynamic partitioners. In fact, this can be easily observed by 
scanning the bold diagonal entries of T3E from Table 3 which are listed below again: 

*T3E: 0.230,0.290, 0.283,0.248,0.201,0.194 
SP2: 0.244,0.302,0.301,0.292, 0.275,0.287 

We note that the execution times gradually decrease from 0.290 sec for P=S=4 to 0.194 sec for P=S=64. This is a 
unique feature which only S-HARP possesses among the three dynamic partitioners. The fast nature of S-HARP togeth- 
er with the comparable edge-cuts is certainly a viable tool for runtime partitioning of adaptive meshes on large-scale 
distributed-memory multiprocessors. 

6 Conclusions 
Runtime mesh partitioning is a critical component of computational science problems when implemented on large- 
scale distributed-memory multiprocessors. We have presented in this paper a parallel dynamic spectral partitioner, 
called S-HARP. The parallel partitioner can quickly partition realistically-sized meshes on a large number of processors 
while maintaining the high partition quality of Laplacian-based spectral partitioning. To demonstrate the effectiveness 
of S-HARP, we have selected six meshes with the size of over 100,000 vertices. S-HARP exploits parallelism in task- 
level recursion and function-level loop to overcome the fallacy that recursion is highly parallel. When processors do 
not have an individual task, function level parallelism is exploited together with recursive parallelism to improve the 
performance. When all processors each have a task to perform, they operate independently of one another. S-HARP 
consists of five steps: inertia computation, eigenvector solver, project, sorting, and split. The three most time-consum- 
ing steps of inertia, project, and sort have been parallelized. The execution times of the eigen solver and split are 
negligible, hence not parallelized. 

S-HARP has been implemented in Message Passing Interface on two distributed-memory multiprocessors: the 
Cray T3E installed at NERSC of Lawrence Berkeley and the IBM SP-2s installed at NASA Ames and Langley. Ex- 
periments have been performed up to 64 processors of the two machines. The mesh Ford2 with 100196 vertices can 
now be partitioned into 256 sets in 0.2 second. The results have shown that the total execution time is not proportional 
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to the number of partitions. As the number of partitions has logarithmically risen to 256 from 2, the execution times 
on a 64-processor T3E have risen slightly more than twice, i.e., 0.088 sec to 0.202 sec. A similar pattern has been ob- 
served for other meshes. All the meshes show that the partitioning times are relatively constant in spite of the 
logarithmic increase in the number of partitions. 

When compared with other dynamic partitioners ParaMeTiS and Jostle, S-HARP is three to 10 times faster in terms 
of execution time for the same meshes. The partition quality of S-HARP is also very close to that of ParaMeTiS and 
Jostle, or there is almost negligible difference in partition quality. When a large number of processors is used, the S- 
HARP performance is even more encouraging since it separates further from ParaMeTiS and Jostle in terms of execu- 
tion time while maintaining a very similar partition quality. S-HARP is also much more scalable than other partitioners 
when the number of processors is increased to 64. S-HARP has given over 15-fold speedup while ParaMeTiS has given 
only a few-fold speedup. 

The current version of S-HARP has been implemented in MPI for portability. A plan is currently underway to 
improve the performance and scalability of S-HARP. While the current MPI version is effective for programming SP- 
2, it is not desirable for programming T3E. MPI employs two-sided communication constructs such as Send and Recv 
which are suitable for message-passing machines. Cray T3E has its own programming environment SHMEM for 
shared-memory machines. Unlike MPI, SHMEM uses one-sided communication constructs such as put and get. It is 
therefore the best if T3E is programmed in the native SHMEM programming environment. However, programming in 
SHMEM will lose the portability of S-HARP. To obtain scalability and at the same time maintain portability, we plan 
to convert the communication intensive routines, sorting, to MPI-2 constructs. MPI-2 provides one,sided communica- 
tion constructs such as put and get which can be readily used in the Cray SHMEM environment with little overhead. 
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