Skip to main content

The information content of action potential trains a synaptic basis

  • Part I: Coding and Learning in Biology
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

Electrical recordings from three neurons revealed that the same spike train emitted by one neuron had markedly different effects on two target neurons. A spike train from a single neocortical pyramidal neuron produced synaptic responses in two target pyramidal neurons that differed in response strength and rates of activity-dependent depression of synaptic transmission. When a pyramidal neuron targeted another pyramidal neuron as well as an interneuron, then responses were also qualitatively different. The responses onto the pyramidal neuron displayed marked activity-dependent depression while those onto the interneuron displayed marked activity-dependent facilitation. The results suggest that each target could have a unique response to the same presynaptic signal. The information contained within the spike train therefore appears to be fragmented and re-integrated into the network at specific locations. The degree to which the specific fragment extracted by each synapse, will influence the spiking activity of the neuron, depends the ongoing integration of input from other presynaptic neurons. It is therefore proposed that differential synaptic transmission enables the neocortex to encode and decode the information contained within spike trains in an associative manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C. & Stevens, C. F. Proc Nat Acad Sci USA 91, 10380–10383 (1994).

    Google Scholar 

  2. Softky, W. R. Curr Opin Neurobiol 5, 239–47 (1995).

    Google Scholar 

  3. Shadlen, M. N. & Newsome, W. T. Curr Opin Neurobiol 4, 569–79 (1994).

    Google Scholar 

  4. Betz, W. J. Physiol (Lond.) 206, 629–644 (1970).

    Google Scholar 

  5. Markram, H., Tsodyks, M. & Wang, Y. Differential signalling via the same axon from neocortical layer 5 pyramidal neurons, submitted (1997).

    Google Scholar 

  6. Tsodyks, M. & Markram, H. Proc Nat Acad Sci (USA) 94, 719–723 (1997).

    Google Scholar 

  7. Bertram, R., Sherman, A. & Stanely, E. F. Journ Neurophysiol 75, 1919–1931 (1996).

    Google Scholar 

  8. Thomson, A. M., Deuchars, J. & West, D. C. Neuroscience 54, 347–359 (1993).

    Google Scholar 

  9. Thomson, A. M. & Deuchars, J. Trends in Neuroscience 17, 119–126 (1994).

    Google Scholar 

  10. Tsodyks, M. & Markram, H. Lech Notes Comput Sci 1112, 445–450 (1996).

    Google Scholar 

  11. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Science 275, 220–224 (1997).

    Google Scholar 

  12. Grinvald, A., Frostig, R. D. & Lieke, E. Proc Nat AcadSciences (USA) 68, 1285–1366 (1988).

    Google Scholar 

  13. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Nature 338, 334–7 (1989).

    Google Scholar 

  14. Abeles, M., Prut, Y., Bergman, H. & Vaadia, E. Prog. Brain. Res. 102, 395–404 (1994).

    Google Scholar 

  15. Albrecht, D. G., Farrar, S. B. & Hamilton, D. B. J. Physiol. (Lond.) 347, 713–39 (1984).

    Google Scholar 

  16. Maffei, L., Fiorentini, A. & Bisti, S. Science 182, 1036–8 (1973).

    Google Scholar 

  17. Markram, H. & Tsodyks, M. Nature 382, 807–810 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Markram, H., Tsodyks, M. (1997). The information content of action potential trains a synaptic basis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020126

Download citation

  • DOI: https://doi.org/10.1007/BFb0020126

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics