Skip to main content

Noise in integrate-and-fire models of neuronal dynamics

  • Part I: Coding and Learning in Biology
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

  • 141 Accesses

Abstract

The sequence of action potentials produced by a neuron is best characterized in terms of a stochastic point process. In this contribution we will be primarily concerned with different variants of stochastic leaky-integrator models for the membrane potential. The point process representation is then achieved by the first passage time transformation of the underlying membrane potential model. Different sources of the noise in the diffusion neuronal models resulting from the stochastic leaky-integrator model will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.F. Abbot and T.B. Kepler. Model neurons: From Hodgkin-Huxley to Hopfield. In: L. Danto (ed.) Statistical Mechanics of Neural Networks. Springer, Berlin, 1990.

    Google Scholar 

  2. D.H. Johnson. Point process models of single-neuron discharges. J. Comput. Neurosci. 3:275–300,1996.

    Google Scholar 

  3. P. Lánský and J.-P. Rospars. Omstein-Uhlenbeck neuronal model revisited. Biol. Cybernet 72:397–406, 1995.

    Google Scholar 

  4. H.C. Tuckwell. Introduction to Theoretical Neurobiology. Cambridge Univ. Press, Cambridge, 1988.

    Google Scholar 

  5. G. Bugmann. Summation and multiplication: two distinct operation domainsof leaky integrate-and-fire neurons. Network 2:489–509, 1991.

    Google Scholar 

  6. D. Tal and E.L. Schwartz. Computing with the leaky integrate-and-fire neuron: Logarithmic computation adn multiplication. Neural Computation 9:305–318, 1997.

    Google Scholar 

  7. R.B. Stein. A theoretical analysis of neuronal variability. Biophys. J. 5:173–195, 1965.

    Google Scholar 

  8. P. Lánský and J.-P. Rospars. Coding of odor intensity. BioSystems 31:15–38, 1993.

    Google Scholar 

  9. P. Lánský. Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics. Phys. Rev. E 55:2040–2043, 1997.

    Google Scholar 

  10. G. Kallianpur and R.L. Wolpert. Weak convergence of stochastic neuronal models, In: M. Kimura, G. Kallianpur, T. Hida (eds.) Stochastic Methods in Biology. Springer, Berlin, 1987.

    Google Scholar 

  11. P. Lánský and V. Lánská Diffusion approximations of the neuronal model with synaptic reversal potentials, Biol. Cybernet. 56:19–26, 1987.

    Google Scholar 

  12. V. Lánnská, P. Lánksý and C.E. Smith. Synaptic transmission in a diffusion model for neural activity. J. theor. Biol. 166:393–406, 1994.

    Google Scholar 

  13. P. Lánský, L. Sacerdote and F. Tomassetti. On the comparison of Feller and OrnsteinUhlenbeck models for neural activity. Biol. Cybernet. 75:457–465, 1995.

    Google Scholar 

  14. W.J. McGill and M.C. Teich. Alerting signals and detection in a sensory network. J. Math. Psvchol. 39:146–163, 1995.

    Google Scholar 

  15. J.P. Segundo, J.-F. Vibert, K. Pakdaman, M. Stiber and O. Diez Martinez. Noise and the neurosciences: A long history, a recent revival and some theory. In: K.H. Pribram (ed.) Origins: Brain & Self Organization. Lawrence Erlbaum, Hillsdale, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lánsky, P., Lánská, V. (1997). Noise in integrate-and-fire models of neuronal dynamics. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020131

Download citation

  • DOI: https://doi.org/10.1007/BFb0020131

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics