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Abstract. Stimulus4ependent changes have been observed in the cor- 
relations between the spike trains of simultaneously-recorded pairs of 
neurons from the auditory cortex of marmosets even when there was no 
change in the average firing rates. A simple neural model can reproduce 
most of the characteristics of these experimental observations based on 
model neurons having leaky integration and fire-and-reset spikes and 
with Poisson-dis tributed, balanced input. The source of the synchrony 
in the model was common sensory input. The outputs of neurons in the 
model appear noisy (almost Poisson) owing to the stochastic nature of 
the input signal, but there is nevertheless a strong central peak in the 
correlation of the output spike trains. The experimental data and this 
simple model clearly demonstrate how even a noisy-looking spike train 
can convey basic3nformation about a sensory stimulus in the relative 
spike timing between neurons. 

1 Introduction 

It is commonly believed that the neural code used by nerve cells to transmit 
information in the cerebral cortex is the mean firing rate of action potentials. 
Whereas there is solid evidence for this coding scheme at the neuromuscular 
junction, where this concept originated, the temporal averaging involved in the 
decoding process causes problems at  the cortical level, where neurons usually 
fire at rates too low to allow for a sufficiently long decoding time. As a possible 
solution to this problem it has been proposed that cells could also perform a 
spatial average instead of, or in addition to, temporal averaging. But this form 
of population code also assumes that information is coded in a firing rate- 
whether spatial or temporal-and that a neuron simply reflects changes in its 
input firing rates by modulating its output firing rate. This is the underlying 
assumption allowing the common reduction to a transfer function used by most 
artificial neural network models to describe single neuron processing. 

Recently, decharms and Merzenich [3] presented evidence for a different form 
of coding in the primary auditory cortex of marmosets. They showed that rapidly 
adapting cells responded to elongated tone stimuli with a fast transient onset 
response returning quickly to spontaneous firing rates. Thus, these cells cannot 
convey information about a steady-state stimulus by their firing rate. However, 
these cells do show an increase in their tendency to fire simultaneously as revealed 



by correlation analysis if they are tuned to the presented stimulus frequency. 
Nevertheless, each spike train looked almost like it was randomly generated and 
there was no stimulus-locked component as shown by a flat shift predictor. 

Most characteristics of these experimental findings can be reproduced in 
a simple neuronal model using leaky integrate-and-fire units with Poisson- 
distributed, balanced input, as shown below. 

2 The Random Walk Model 

Assume that the generation of action potentials relies on the membrane poten- 
tial ui( t )  of cell i ( 1  5 i 5 N) at time t crossing a firing threshold 8  and that 
deviations from the resting potential (set to 0 here) are due to an input cur- 
rent Ci(t)  and given these deviations decay exponentially with the membrane 
time constant 7,. The following equation governs the temporal evolution of the 
membrane potential: 

A spike occurs when ui( t )  = 8 ,  and ui is reset to its resting level. To avoid 
unrealistically large hyperpolarizations, we also introduce a negative saturation 
limit oinh,  i. e., we assure ui ( t )  2 oinh for all t . To specify the input current, Ci ( t )  , 
assume that this input can be subdivided into a background and a stimulus 
component, cfg(t) and cftim ( t )  respectively 

and that each of these components consists of excitatory as well as inhibitory 
parts 

~ p 1 8 t i m  ( t )  = E p , s t i m  ( t )  - bbglstim Ibgl~t im i ( t  - dinh) , (3) 

where b  denotes a balancing factor indicating the relative strength of the inhi- 
bition with respect to the excitation and dinh represents a delay. 

To introduce noise in the model, assume that all excitatory and inhibitory 
signal components are realizations of an ideal Poisson process, i. e., 

Xk 
~ibp(t) = k  with probability p ( k )  = -e-A 

k  ! 

where k  is drawn at  each time step for every component independently. The 
parameter X denotes the mean and the variance of the distribution. Here, it can 
be interpreted as X = n,R pf the product of the number of afferents times the 
probability of firing in a single time step, thus fixing the input firing rate. For 
X = 10 and a basic time step of 1 ms, this might correspond to 100 afferents each 
firing at  a rate of 100Hz. 

Due to the randomness in the input the membrane potential undergoes a 
sort of a random walk with renewal [4]. 
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Fig. 1. Single neuron model. (Top) The total input to the neuron is a sum of 
four Poisson processes, each with intensity X = 10, consisting of excitatory and 
inhibitory background activity during the whole run and excitatory and delayed 
inhibitory signals (dinh = 20 msj from t = 1000 to 2000 ms. (Middle) Membrane 
potential at the receiving neuron (time constant rm = 10 ms); The dotted line 
indicates the firing threshold (8 = 15). (Bottom) A spike histogram computed 
using 100 trials and 5 ms bins scaled to represent the mean firing rate in spikes 
per second. Note the pronounced onset response together with a rapid decay to 
the spontaneous rate even during stimulation. The stimulus duration is indicated 
by the horizontal bar. 

3 Simulation Results 

For simulations, we used the following set of parameters. The thresholds were 
set to 0 = 15 and oinh = -30, both in units of single EPSP amplitudes. The time 
scale was fixed by rm = 10 ms and dinh = 20ms. We solved (1) using a simple 
forward Euler method with a time step size of lms. The input was specified 
by X = 10 for all four components and the balancing factors are bbg = 1 and 
bstim = 1.1. A typical simulation run lasted for three seconds where a stimulus 
was switched on after the first second and turned off after the second. 

3.1 Single Cell Properties 

Consider first the firing of a single cell. As seen in the top row of Fig. 1, the total 
input current fluctuates vigorously. The resulting membrane potential (Fig. 1, 
middle) is smoother due to the temporal integration. Threshold crossings of the 
membrane potential resulting in spike emission were only driven by fluctuations 
except for the stimulus onset period, where there was an excess of excitatory 
input due to the delayed arrival of the balancing inhibitory input. This can clearly 
be seen in the spike histogram (lower part of Fig. 1) obtained by averaging over 
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Fig. 2. A pair of cells receiving a common input. (Top row) Average correla- 
tions from three different time periods: (Left) From t = 250 to 750ms - before 
stimulation; (Middle) From t = 1250 to 1750ms - during stimulation but after 
the onset response and (Right) from t = 2250 to 2750ms - after stimulation. 
There is a clear peak at T = 0 for the stimulation period indicating that these 
two neurons have a tendency to fire in synchrony during presence of the stim- 
ulus. Correlations were calculated for every trial using 5 ms bins and averaged 
afterwards. (Bottom, left) Tuning curve: Height of the central peak in the cor- 
relation during stimulation as a function of the fraction of identical input. The 
peak height increases with the overlap. (Bottom, right) Due to the overall noisy 
structure of the observed response, the shift predictor, correlating responses from 
different trials, is flat. Thus, there was no stimulus-locked activity during the 
tonic phase of the response. 

100 repetitions of the same experiment (but using a different seed for initializing 
the random number generator each time). The mean firing rate stayed constant 
throughout the whole run except for a pronounced burst at stimulus onset and a 
reduction of firing after stimulus offset where the experimental recordings show 
a transient increase of the firing rate. A large trial-to-trial variability in firing 
was observed as well (data not shown). 

3.2 Multiple Cell Properties 

In the experiments of [3] simultaneous recordings of spike trains from pairs of cells 
were analyzed. We simulated two cells getting independent background signals 
but sharing identical stimulus components in their input (G'ttirn (t ) = Cjtirn ( t )  
for all t) assuming that cells with similar tuning properties are to some extend 
enervated by the same afferent neurons. The top row of Fig. 2 shows correlations 
between the firing times of the two cells calculated for every single trial for three 
different periods of time (before, during, and after stimulus presentation) and 



Fig. 3. Time course of the average correlation calculated using a 500 ms time 
window sliding over a 9s  simulation run in 100ms time steps. A stimulus was 
pesented from t = 3000 to 6000 ms. 

averaged afterwards. There was a strong peak at zero time shift only during 
common stimulation indicating an increased tendency of the two cells to fire 
simultaneously. 

This is not a surprising result, because one might expect the common input 
to drive both cells to firing threshold simultaneously, but it is worth noticing 
since only a fraction of the emitted spikes are affected. These synchronous spikes 
happen to occur at random times and are not stimulus-locked, as indicated by 
the flat shift predictor in the lower-right part of Fig. 2. The height of the central 
peak in the correlation depends mainly on the amount of common input relative 
to the total input to both cells as shown in Fig.2 (bottom left). The overlap 
here is defined as the ratio of common versus total input, ranging from zero (no 
common input) to one (absolutely identical input). 

Finally, the time course of the correlation peak is shown in Fig. 3. Correlations 
were calculated from a 500 ms time window sliding over the entire run in 100 ms 
time steps leading to five times oversampling following [3]. During the entire 
stimulation period, there was a pronounced increase in the correlations, which 
disappeared when the stimulus was turned off. 

4 Discussion 

In contrast to the common belief that neurons code information only in their 
mean firing rate, decharms and Merzenich have shown that there is another 
possibility of coding, based on the relative timing of spikes from different neurons 
[3]. We have replicated their results in a neural model. Conceptually, this idea is 
not new, and the underlying firing pattern may be even more complicated than 
just synchronous firing, as in synfire chains [I] or arbitrary firing patterns [5] or 
with respect to an internal neuronal clock [6]. 

What is new here is the observation that relative spike timing might be used 
in a noisy mode of operation. For this regime, it has commonly been assumed 
that the only way to get at  reliable information transmission should be based on 
a rate code [9]. But there is increasing evidence for the possibility of temporal 



codes. First, it has been shown that neocortical neurons fire very reliably if 
driven mainly by input fluctuations instead of a constant current [7]. Therefore, 
the well known high variability in cortical spike firing times might reflect a 
high variability in the input to a neuron instead of intrinsic noise due to the 
spike generation process. Second, correlations in firing times between neurons 
tuned to similar stimulus features are omnipresent, but they have usually been 
interpreted as an artifact of common stimulation causing redundancy and having 
no use. Recently, this interpretation has been questioned. In the visual system, 
correlations seem to improve stimulus representation on the level of the retina 
[8] as well as the LGN [2]. In the auditory system, [3] provided evidence for 
the crucial role of correlations in stimulus representations. Their study was the 
starting point for the model presented here. We do not claim to have reproduced 
every single detail of their data. For this, a biophysically more realistic model 
should be appropriate. But we have shown here how such a code might work 
naturally and reliably even in a noisy environment. 

The final question, however, whether this type of coding is really used in 
the brain (i.e., read out at  the next level) remains to be experimentally exam- 
ined. Correlations are easily read out by neurons and they play a central role in 
learning, so there is every reason to continue along this line of investigation. 

Acknowledgments Supported by DFG (grant Ri 82111-1) and The Howard 
Hughes Medical Institute. 

References 

1. M. Abeles, H. Bergman, E. Margalit, and E. Vaadia. Spatiotemporal firing patterns 
in the frontal cortex of behaving monkeys. J. of Neurophysiology, 70:1629-1638, 
1993. 

2. Y. Dan, J. J. Atick, and R. C. Reid. Efficent coding of natural scenes in the lat- 
eral geniculate nucleus: Experimental test of a computational theory. J. Neurosci., 
16(10):3351-3362, 1996. 

3. R. C .  deCharms and M. M. Merzenich. Primary cortical representation of sounds 
by the coordination of action-potential timing. Nature, 381:610-613, 1996. 

4. G. L. Gerstein and B. Mandelbrot. Random walk models for the spike activity of a 
single neuron. Biophysic. J., 4:4148, 1964. 

5. W. Gerstner, R. Ktz, and J. L. van Hemmen. Why spikes? Hebbian learning and 
retrieval of time-resolved excitation patterns. Biol. Cybern., 69:503-515, 1993. 

6. J. J. Hopfield. Pattern recognition computation using action potential timing for 
stimulus representation. Nature, 376:33-36, 1995. 

7. Z. F. Mainen and T. J. Sejnowski. Reliability of spike timing in neocortical neurons. 
Science, 268:1503-1506, 1995. 

8. M. Meister, L. Lagnado, and D. A. Baylor. Concerted signaling by retinal ganglion 
cells. Science, 270:1207-1210, 1995. 

9. M. N. Shadlen and W. T. Newsome. Noise, neural codes and cortical organization. 
Curr. Opin. Neurobiol., 4:569-579, 1994. 


