Skip to main content

A model of clipped hebbian learning in a neocortical pyramidal cell

  • Part I: Coding and Learning in Biology
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

  • 100 Accesses

Abstract

A detailed compartmental model of a cortical pyramidal cell is used to determine the effect of the spatial distribution of synapses across a dendritic tree on the pattern recognition capability of the neuron. By setting synaptic strengths according to the clipped Hebbian learning rule used in the associative net neural network model, the cell is able to recognise input patterns, but with a one to two order of magnitude decrease in performance compared to the computing units in the network model. Performance of the cell is optimised by particular forms of input signal, but is not altered by different pattern recognition criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bennett, W. Gibson, and J. Robinson. Dynamics of the CA3 pyramidal neuron autoassociative memory network in the hippocampus. Phil. Trans. Roy. Soc. Lond. B, 343:167–187, 1994.

    Google Scholar 

  2. O. Bernander. Synaptic Integration and Its Control in Neocortical Pyramidal Cells. PhD thesis, California Institute of Technology, 1993.

    Google Scholar 

  3. O. Bernander, C. Koch, and R. Douglas. Amplification and linearization of distal synaptic input to cortical pyramidal cells. J. Neurophys., 72:2743–2753, 1994.

    Google Scholar 

  4. T. Brown, E. Kairiss, and C. Keenan. Hebbian synapses: biophysical mechanisms and algorithms. Ann. Rev. Neurosci., 13:475–511, 1990.

    Google Scholar 

  5. T. Brown, Z. Mainen, A. Zador, and B. Claiborne. Self-organization of Hebbian synapses in hippocampal neurons. In R. Lippmann, J. Moody, and D. Touretzky, editors, Neural Information Processing Systems 3, pages 39–45, San Mateo, California, 1991. Morgan Kaufmann.

    Google Scholar 

  6. P. Dayan and D. Willshaw. Optimising synaptic learning rules in linear associative memories. Biol. Cybern., 65:253–265, 1991.

    Google Scholar 

  7. R. Douglas, K. Martin, and D. Whitteridge. An intracellular analysis of the visual responses of neurones in cat visual cortex. J. Physiol., 440:659–696, 1991.

    Google Scholar 

  8. B. Graham and D. Willshaw. Capacity and information efficiency of the associative net. Network, 8:35–54, 1997.

    Google Scholar 

  9. M. Hines. A program for simulation of nerve equations with branching geometries. Int. J. Biomed. Comput., 24:55–68, 1989.

    Google Scholar 

  10. D. Johnston, J. Magee, C. Colbert, and B. Christie. Active properties of neuronal dendrites. Ann. Rev. Neurosci., 19:165–186, 1996.

    Google Scholar 

  11. D. Marr. Simple memory: a theory for archicortex. Phil. Trans. Roy. Soc. Lond. B, 262:23–81, 1971.

    Google Scholar 

  12. B. Mel. Synaptic integration in an excitable dendritic tree. J. Neurophys., 70:1086–1101, 1993.

    Google Scholar 

  13. A. Treves and E. Rolls. Computational analysis of the role of the hippocampus in memory. Hippocampus, 4:374–391, 1994.

    Google Scholar 

  14. D. Willshaw. Models of distributed associative memory. PhD thesis, University of Edinburgh, 1971.

    Google Scholar 

  15. D. Willshaw, O. Buneman, and H. Longuet-Higgins. Non-holographic associative memory. Nature, 222:960–962, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graham, B., Willshaw, D. (1997). A model of clipped hebbian learning in a neocortical pyramidal cell. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020148

Download citation

  • DOI: https://doi.org/10.1007/BFb0020148

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics