Skip to main content

Nature vs. nurture in the development of tangential connections and functional maps in the visual cortex

  • Part II: Cortical Maps and Receptive Fields
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

A series of experiments concerned with mechanisms underlying the development of the visual cortex revealed that long-range tangential connections display at least the following three characteristics: i) in strabismic but not in normally raised cats, intracortical fibers preferentially connect cell groups activated by the same eye (‘ocular dominance selectivity’), ii) within the subsystems of the left and right eye domains, they extend primarily between neurons activated by similar stimulus orientations (‘orientation selectivity’) and iii) they exhibit an anisotropy with respect to the cortical axes by preferentially linking neurons with colinearly aligned receptive fields (‘axial specificity’). These results are compatible with the idea of a selective stabilization of tangential fibers between coactive neurons (the “fire together, wire together” — hypothesis). Optical imaging of functional maps in area 17 of strabismic cats further revealed that iso-orientation domains are continuous across the borders between adjacent ocular dominance columns. This rather supports an experience-independent initial development of orientation preference maps. To what extent spontaneous versus visually driven activity patterns might be involved both in the development of tangential connections and in functional maps is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hebb, D.O. (1949) The organization of behavior. A neuropsychological theory. New York: Wiley.

    Google Scholar 

  2. Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D. and Wiesel, T.N. (1986) Nature 324: 361–364.

    Google Scholar 

  3. Löwel, S. and Singer, W. (1992) Science 255: 209–212.

    Google Scholar 

  4. Schmidt, K.E., Goebel, R., Löwel, S. and Singer, W. (1997a) Europ. J. Neurosci. 9:1083–1089

    Google Scholar 

  5. Schmidt, K.E., Kim, D.-S., Singer, W., Bonhoeffer, T. and Löwel, S. (1997b) J. Neurosci., 15:5480–5492

    Google Scholar 

  6. Gilbert, C.D. and Wiesel, T.N (1989) J. Neurosci. 9: 2432–2442.

    Google Scholar 

  7. Malach, R., Amir, Y., Harel, M. and Grinvald, A. (1993) Proc. Natl. Acad. Sci. USA 90: 10469–10473.

    Google Scholar 

  8. Bosking, W.H., Zhang, Y., Schofield, B. and Fitzpatrick, D. (1997) J. Neurosci. 17: 2112–2127.

    Google Scholar 

  9. Crowley, J.C., Bosking, W.H., Foster, M. and Fitzpatrick, D. (1996) Soc. Neurosci. Abstr. 22: 404.10.

    Google Scholar 

  10. Ruthazer, E.S. and Stryker, M.P. (1996) J. Neurosci. 16: 7253–7269.

    Google Scholar 

  11. Stryker, M.P. (1991) In: Development of the visual system (Lam, D.M.-K. and Shatz, C.J., eds.), pp 267–287. Cambridge, MA: MIT Press.

    Google Scholar 

  12. Chapman, B., Stryker, M.P. and Bonhoeffer, T. (1996) J. Neurosci. 16: 6443–6453.

    Google Scholar 

  13. Gödecke, I., Kim, D.-S., Bonhoeffer, T. and Singer, W. (1997) Europ. J. Neurosci. 17:in press.

    Google Scholar 

  14. Gödecke, I. and Bonhoeffer, T. (1996) Nature 379: 251–254.

    Google Scholar 

  15. Kim, D.-S. and Bonhoeffer, T. (1994) Nature 370: 370–372.

    Google Scholar 

  16. Löwel, S., Schmidt, K., Kim, D.-S., Singer, W. and Bonhoeffer, T. (1994) Eur. J. Neurosci. Suppl. 7:48.06.

    Google Scholar 

  17. Schmidt, K.E., Kim, D.-S., Singer, W., Bonhoeffer, T. and Löwel, S. (1994) Soc. Neurosci. Abstr. 20: 137.7.

    Google Scholar 

  18. Henry, G.H., Michalski, A., Wimborne, B.M. and McCart, R.J. (1994) Prog. Neurobiol. 43: 381–437.

    Google Scholar 

  19. Wiesel, T.N. (1982) Nature 299: 583–591.

    Google Scholar 

  20. Huttenlocher, P.R. (1967) Exp. Neurol. 17: 247–262.

    Google Scholar 

  21. Kim, U., Bal, T. and McCormick, D.A. (1995) J. Neurophysiol. 74: 1301–1323.

    Google Scholar 

  22. McCormick, D.A., Trent, F. and Ramoa, A.S. (1995) J. Neurosci. 15: 5739–5752.

    Google Scholar 

  23. Hubel, D.H. and Wiesel, T.N. (1977) Proc. R. Soc. Lond. B 198: 1–59.

    Google Scholar 

  24. Bartfeld, E. and Grinvald, A. (1992) Proc. Natl. Acad. Sci. USA 89: 11905–11909.

    Google Scholar 

  25. Obermayer, K. and Blasdel, G.G. (1993) J. Neurosci. 13: 4114–4129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Löwel, S., Schmidt, K.E., Singer, W. (1997). Nature vs. nurture in the development of tangential connections and functional maps in the visual cortex. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020151

Download citation

  • DOI: https://doi.org/10.1007/BFb0020151

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics