Abstract
In the primary visual cortex of monkeys, the development of ocular dominance and orientation selectivity is at least partially driven by neural activity. We propose a modified Hebb-type learning mechanism, which takes into account non-specific components of activity-dependent synaptic modification. It is shown analytically, that ocular dominance and ON-OFF-segregation occur simultaneously in a linear network as soon as left-eye and right-eye synapses tend to cluster on the surface of the postsynaptic neuron. Simulations show, that this mechanism is robust against the introduction of network nonlinearities such as rectifying transfer functions and intracortical recurrency. The results imply, that details of single cell properties can have considerable influence on the behaviour of high level developmental models.
Preview
Unable to display preview. Download preview PDF.
References
M. P. Stryker and W. Harris. Binocular impuls blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci., 6:2117–2133, 1986.
T. N. Wiesel and D. H. Hubel. Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol, 158:307–318, 1974.
M. Stetter, E. W. Lang, and A. Miner. Emergence of orientation selective simple cells simulated in deterministic and stochastic neural networks. Biol. Cybern., 68:465–476, 1993.
]K. D. Miller. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on-and off-center inputs. J. Neurosci., 14:409–441, 1994.
M. Stetter, A. Müller, and E. W. Lang. Neural network model for the coordinated formation of orientation preference and orientation selectivity maps. Phys. Rev. E, 50:4167–4181, 1994.
K. D. Müller, J. B. Keller, and M. P. Stryker. Ocular dominance column development: Analysis and simulation. Science, 245:605–615, 1989.
C. Piepenbrock, H. Ritter, and K. Obermayer. Linear correlation-based learning models require a two-stage process for the development of orientation and ocular dominance. Neural Proc. Lett., 3:31–37, 1996.
F. Engert and T. Bonhoeffer. Synapse specifity of long-term potentiation breaks down at short distances. Nature, page submitted, 1997.
C. Piepenbrock, H. Ritter, and K. Obermayer. The joint development of orientation and ocular dominance: Role of constraints. Neural Comp., 9:in press, 1997.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stetted, M., Lang, E.W., Obermayerl, K. (1997). Synapse clustering can drive simultaneous ON-OFF and ocular-dominance segregation in a model of area 17. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020154
Download citation
DOI: https://doi.org/10.1007/BFb0020154
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive