Skip to main content

Synapse clustering can drive simultaneous ON-OFF and ocular-dominance segregation in a model of area 17

  • Part II: Cortical Maps and Receptive Fields
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

In the primary visual cortex of monkeys, the development of ocular dominance and orientation selectivity is at least partially driven by neural activity. We propose a modified Hebb-type learning mechanism, which takes into account non-specific components of activity-dependent synaptic modification. It is shown analytically, that ocular dominance and ON-OFF-segregation occur simultaneously in a linear network as soon as left-eye and right-eye synapses tend to cluster on the surface of the postsynaptic neuron. Simulations show, that this mechanism is robust against the introduction of network nonlinearities such as rectifying transfer functions and intracortical recurrency. The results imply, that details of single cell properties can have considerable influence on the behaviour of high level developmental models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. P. Stryker and W. Harris. Binocular impuls blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci., 6:2117–2133, 1986.

    Google Scholar 

  2. T. N. Wiesel and D. H. Hubel. Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol, 158:307–318, 1974.

    Google Scholar 

  3. M. Stetter, E. W. Lang, and A. Miner. Emergence of orientation selective simple cells simulated in deterministic and stochastic neural networks. Biol. Cybern., 68:465–476, 1993.

    Google Scholar 

  4. ]K. D. Miller. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on-and off-center inputs. J. Neurosci., 14:409–441, 1994.

    Google Scholar 

  5. M. Stetter, A. Müller, and E. W. Lang. Neural network model for the coordinated formation of orientation preference and orientation selectivity maps. Phys. Rev. E, 50:4167–4181, 1994.

    Google Scholar 

  6. K. D. Müller, J. B. Keller, and M. P. Stryker. Ocular dominance column development: Analysis and simulation. Science, 245:605–615, 1989.

    Google Scholar 

  7. C. Piepenbrock, H. Ritter, and K. Obermayer. Linear correlation-based learning models require a two-stage process for the development of orientation and ocular dominance. Neural Proc. Lett., 3:31–37, 1996.

    Google Scholar 

  8. F. Engert and T. Bonhoeffer. Synapse specifity of long-term potentiation breaks down at short distances. Nature, page submitted, 1997.

    Google Scholar 

  9. C. Piepenbrock, H. Ritter, and K. Obermayer. The joint development of orientation and ocular dominance: Role of constraints. Neural Comp., 9:in press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stetted, M., Lang, E.W., Obermayerl, K. (1997). Synapse clustering can drive simultaneous ON-OFF and ocular-dominance segregation in a model of area 17. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020154

Download citation

  • DOI: https://doi.org/10.1007/BFb0020154

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics