Abstract
A novel neural network model is shown to realize various geometric illusion phenomena in human vision, which also makes it possible to quantitatively analyze the geometrical deformation of visual space. In sequel, we can predict the geometric; illusions based on the proposed model.
Preview
Unable to display preview. Download preview PDF.
References
F.Ratliff:Holden-Day San Francisco(1965)
S. Morinaga, H. Ikeda, Jap. J. Psycho., 36, p.231–238 (1965)
Howard, L. Resnikoff, Springer-Verlag, 1989
R.B.Howard: Psychonomic Monograph Supplements, 4, 3, p.57 (1971)
R.K.Limeburg: Princeton Unlver. Press, 1947
L.Ganz,Psycho. Review, 73, p.128 (1966)
T. Morita, K. Fujii, Jap. J. Inst. Eletr. Com Eng. pp.1857–1863, 1966.
Blackmore, R.H.S.Carpenter, M.A.Georgeson, Nature, 228, p.37 (1970)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chao, J., Yasuhiko, M., Yoshida, S. (1997). Realization of geometric illusions and geometry of visual space with neural networks. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020165
Download citation
DOI: https://doi.org/10.1007/BFb0020165
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive