Skip to main content

Learning oscillations using adaptive control

  • Part I: Coding and Learning in Biology
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

We study a model for learning periodic signals in continouus time Hopfield networks proposed by Doya and Yoshizawa ([3]) that can be considered as a model for temporal pattern memory in animal motor systems. A network receives an external oscillatory input and adjusts its weights so that this signal can be reproduced approximately as the network output after some time. We use tools from adaptive control theory to derive an algorithm for weight matrices with special structure. If the input is generated by a network of the same structure the algorithm converges globally and does not exhibit the deficiencies of the back-propagation based approach of Doya and Yoshizawa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertini, F., Sontag, E. D.: For neural networks, function determines form. Neural Networks 7 (1993), 975–990

    Google Scholar 

  2. Amann, H.: Gewöhnliche Differentialgleichungen. de Gruyter, Berlin 1983

    Google Scholar 

  3. Doya, K., Yoshizawa, S.: Adaptive neural oscillator using continuous time backpropagation. Neural Networks 2 (1989), 375–385

    Google Scholar 

  4. Kosmatopolous, E. B., Christodoulou, M. A., Ioannou, P. A.: Dynamical neural network that ensure exponential identification error convergence. Neural Networks 10 (1997), 299–314

    Google Scholar 

  5. Narendra, K., Annaswamy, A.: Stable Adaptive Systems, Prentice Hall, Englewood Cliffs, New Jersey 1989

    Google Scholar 

  6. Pearlmutter, B. A.: Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans. Neural Networks 6 (1995), 1212–1228

    Google Scholar 

  7. Reinke, R.: Adaptive Regeln zum Lernen und Reproduzieren von periodischen Signalen mit dynamischen Netzwerken. Dissertation, Universität Kaiserslautern, 1994

    Google Scholar 

  8. Sastry, S., Bodson, M.: Adaptive Control. Prentice Hall, Englewood Cliffs, New Jersey 1989

    Google Scholar 

  9. Weiß, M. G.: Learning periodic signals with neural networks. in preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georg Weiß, M. (1997). Learning oscillations using adaptive control. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020176

Download citation

  • DOI: https://doi.org/10.1007/BFb0020176

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics