Skip to main content

Elliptical basis function networks for classification tasks

  • Part III: Learning: Theory and Algorithms
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

In this paper we compare variants of elliptical basis function networks for classification tasks. The networks are introduced as density estimators and then modified towards RBF networks. Node reduction is accomplished by a genetic algorithm(GA). Two different kinds of node connections are compared. As a second degree of freedom different types of basis functions are investigated. On an artificial test set of the time series domain the impact of dimensionality is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feist,Joachim; Scott, Paul D. Uncertainty in Connectionist Learning, Paper based on M. Sc. Thesis, University of Essex, 1995. http://illwww.ira.uka.de:80/-jofeist/paper.ps

    Google Scholar 

  2. Johnston, Lloyd P.M.; Kramer, Mark A. Probability Density-Estimation Using Elliptic Basis Functions in AlChE Journal, American Inst. of Chemical Engineers, N.Y., Vol.40 No.10, 31–45. 1994.

    Google Scholar 

  3. Lowe, D. On the Use of Nonlocal and Non Positive Definite Basis Functions in Radial Basis Function Networks, Artificial Neural Networks, Conf. Publication No. 409, 1995.

    Google Scholar 

  4. Masters,T., Practical Neural Network Recipes in C++,Academic Press,San Diego,1993.

    Google Scholar 

  5. Michie D., Spiegelhalter D. J., Taylor C. C. Machine Learning, Neural and Statist. Classification, Ellis Horwood, Hempstead, 1994.

    Google Scholar 

  6. Musavi, M; Ahmed, W; Chan K., Fabris K. B; Hummels D. M. On the Training of Radial Basis Function Classifiers in Neural Networks, Vol. 5, Pergamon Press, New Yourk, 595–603, 1992.

    Google Scholar 

  7. Musavi, M.; Kalantri, K.; Ahmed, W.; Chan K. H A Minimum Error Neural Network (MNN) Neural Networks, Vol. 6, Pergamon Press, New York, 397–407, 1993.

    Google Scholar 

  8. Parzen, E. On the Estimation of a Probability Density Function and Mode Annals of Mathematical Statistics 33, 1065–1076, 1962.

    Google Scholar 

  9. Richard, Michael D.; Lippmann, Richard P. Neural Network Classifiers Estimate Bayesian A Posteriori Probabilities in Neural Computation v. 3(4),Cambridge, MA: MIT Press, 461–483, 1991.

    Google Scholar 

  10. Scott, D. Multivariate Density Estimation, N.Y. Wiley, 1992.

    Google Scholar 

  11. Specht, Donald F. Probabilistic Neural Networks in Neural Networks v. 3(1), Pergamon Press, New York, 109–118, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutjahr, S., Feist, J. (1997). Elliptical basis function networks for classification tasks. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020183

Download citation

  • DOI: https://doi.org/10.1007/BFb0020183

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics