Abstract
In this paper we compare variants of elliptical basis function networks for classification tasks. The networks are introduced as density estimators and then modified towards RBF networks. Node reduction is accomplished by a genetic algorithm(GA). Two different kinds of node connections are compared. As a second degree of freedom different types of basis functions are investigated. On an artificial test set of the time series domain the impact of dimensionality is considered.
Preview
Unable to display preview. Download preview PDF.
References
Feist,Joachim; Scott, Paul D. Uncertainty in Connectionist Learning, Paper based on M. Sc. Thesis, University of Essex, 1995. http://illwww.ira.uka.de:80/-jofeist/paper.ps
Johnston, Lloyd P.M.; Kramer, Mark A. Probability Density-Estimation Using Elliptic Basis Functions in AlChE Journal, American Inst. of Chemical Engineers, N.Y., Vol.40 No.10, 31–45. 1994.
Lowe, D. On the Use of Nonlocal and Non Positive Definite Basis Functions in Radial Basis Function Networks, Artificial Neural Networks, Conf. Publication No. 409, 1995.
Masters,T., Practical Neural Network Recipes in C++,Academic Press,San Diego,1993.
Michie D., Spiegelhalter D. J., Taylor C. C. Machine Learning, Neural and Statist. Classification, Ellis Horwood, Hempstead, 1994.
Musavi, M; Ahmed, W; Chan K., Fabris K. B; Hummels D. M. On the Training of Radial Basis Function Classifiers in Neural Networks, Vol. 5, Pergamon Press, New Yourk, 595–603, 1992.
Musavi, M.; Kalantri, K.; Ahmed, W.; Chan K. H A Minimum Error Neural Network (MNN) Neural Networks, Vol. 6, Pergamon Press, New York, 397–407, 1993.
Parzen, E. On the Estimation of a Probability Density Function and Mode Annals of Mathematical Statistics 33, 1065–1076, 1962.
Richard, Michael D.; Lippmann, Richard P. Neural Network Classifiers Estimate Bayesian A Posteriori Probabilities in Neural Computation v. 3(4),Cambridge, MA: MIT Press, 461–483, 1991.
Scott, D. Multivariate Density Estimation, N.Y. Wiley, 1992.
Specht, Donald F. Probabilistic Neural Networks in Neural Networks v. 3(1), Pergamon Press, New York, 109–118, 1990.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gutjahr, S., Feist, J. (1997). Elliptical basis function networks for classification tasks. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020183
Download citation
DOI: https://doi.org/10.1007/BFb0020183
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive