Skip to main content

A recurrent self-organizing map for temporal sequence processing

  • Part III: Learning: Theory and Algorithms
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

This paper presents a recurrent self-organizing map (RSOM) for temporal sequence processing. The RSOM uses the history of a pattern (i.e., the previous elements in the sequence) to compute the best matching unit and to adapt the weights of the map. The RSOM is similar to Kohonen's original SOM except that each unit has an associated recursive differential equation. The experimental results show that the RSOM is able to learn and distinguish temporal sequences, and that it can improve EEG-based epileptic activity detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.J. Chappell & J.G. Taylor (1993). Neural Networks, 6:441–445.

    Google Scholar 

  2. N.A. Gershenfeld & A.S. Weigend (1993). In Times Series Prediction: Forecasting the Future and Understanding the Past, pp. 1–70, Addison-Wesley.

    Google Scholar 

  3. J. Kangas (1991). ICANN'91, pp. 1591–1594.

    Google Scholar 

  4. J. Kangas (1994). Dr. Tech. thesis, Helsinki University of Technology.

    Google Scholar 

  5. T. Kohonen (1991). ICANN'91, pp. 1357–1360.

    Google Scholar 

  6. T. Kohonen (1993). Proc. IEEE Int. Conf. on Neural Networks, pp. 1147–1156.

    Google Scholar 

  7. T. Kohonen (1995). Self-Organizing Maps. Springer-Verlag.

    Google Scholar 

  8. L. Leinonen, J. Kangas, K. Torkkola, & A. Juvas (1992). Journal of Speech and Hearing Research, 35:287–295.

    Google Scholar 

  9. S.P. Luttrell (1989). Pattern Recognition Letters, 10:1–7.

    Google Scholar 

  10. S.G. Mallat (1989). IEEE Trans. Pattern Anal. Machine Intell., 11:674–693.

    Google Scholar 

  11. M.C. Mozer (1993). In Times Series Prediction: Forecasting the Future and Understanding the Past, pp. 243–264, Addison-Wesley.

    Google Scholar 

  12. J.G. Proakis & D.G. Manolakis (1992). Digital Signal Processing. Macmillan.

    Google Scholar 

  13. A.C. Tsoi & A.D. Black (1994). IEEE Trans. on Neural Networks, 5:229–239.

    Google Scholar 

  14. M. Varsta, J. Heikkonen, & J. del R. Millân (1997). Int. Conf. on Engineering Applications of Neural Networks.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Varstal, M., Millán, J.d.R., Heikkonen, J. (1997). A recurrent self-organizing map for temporal sequence processing. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020191

Download citation

  • DOI: https://doi.org/10.1007/BFb0020191

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics