Abstract
In this article, we describe how input selection can be performed with partial retraining. By detecting and removing irrelevant input variables resources are saved, generalization tends to improve, and the resulting architecture is easier to interpret. In our simulations the relevant input variables were correctly separated from the irrelevant variables for a regression and a classification problem.
Real World Computing Partnership
Foundation for Neural Networks
Preview
Unable to display preview. Download preview PDF.
References
T. Cibas, F. Fogelman Soulié, P. Gallinari, and S. Raudys. Variable selection with optimal cell damage. In M. Marinaro and P. G. Morasso, editors, Proceedings of the International Conference on Artificial Neural Networks, volume 1, pages 727–730. Springer-Verlag, 1994.
T. Czernichow. Architecture selection through statistical sensitivity analysis. In C. von der Malsburg, W. von Seelen, J. C. Vorbriiggen, and B. Sendhoff, editors, Artificial Neural Networks-ICANN 96, volume 1112 of Lecture Notes in Computer Science, pages 179–184. Springer, 1996.
N. R. Draper and H. Smith. Applied Regression Analysis. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, second edition, 1981.
J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–141, 1991.
G. D. Garson. Interpreting neural-network connection weights. AI Expert, 6(4):47–51, 1991.
B. Hassibi, D. G. Stork, G. Wolff, and T. Watanabe. Optimal Brain Surgeon: Extensions and performance comparisons. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems, volume 6, pages 263–270, San Francisco, 1994. Morgan Kaufmann.
D. G. Kleinbaum, L. L. Kupper, and K. E. Muller. Applied Regression Analysis and Other Multivariable Methods. The Duxbury series in statistics and decision sciences. PWS-KENT Publishing Company, Boston, second edition, 1988.
J. O. Moody and P. J. Antsaklis. The dependence identification neural network construction algorithm. IEEE Transactions on Neural Networks, 7(1):3–15, 1996.
M. C. Mozer and P. Smolensky. Using relevance to reduce network size automatically. Connection Science, 1(1):3–16, 1989.
K. L. Priddy, S. K. Rogers, D. W. Ruck, G. L. Tarr, and M. Kabrisky. Bayesian selection of important features for feedforward neural networks. Neurocomputing, 5(2/3):91–103, 1993.
P. van de Laar, T. Heskes, and S. Gielen. Partial retraining: A new approach to input relevance determination. Submitted, 1997.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van de Laar, P., Gielen, S., Heskes, T. (1997). Input selection with partial retraining. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020199
Download citation
DOI: https://doi.org/10.1007/BFb0020199
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive