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Abstract. We consider the combination of the outputs of several clas-
sifiers trained independently for the same discrimination task. We intro-
duce new results which provide optimal solutions in the case of linear
combinations. We compare our solutions to existing ensemble methods
and characterize situations where our approach should be preferred.

1 Introduction

Statisticians pointed out long ago that combining predictive models led to bet-
ter estimates and performance than simply selecting the best of them [1]. Model
combination is thus a viable alternative to model selection and this area has
been investigated by several researchers in the neural networks field [7]. Linear
combinations - often coined linear ensemble methods - have proved empirically
to be efficient for both regression and discrimination tasks. However, theoretical
evidence has been mainly developed for regression. The case of discrimination
is more complicated since combining estimates of class probabilities for com-
puting better estimates - this is the framework considered in most approaches
- introduces specific constraints which are absent in the case of regression. We
consider here linear combinations of classifiers. The general framework is that of
multivariate linear regression (MLR) where constraints ensure that combination
outputs are probability estimates. This framework has already been considered
in [5] where a suboptimal procedure was proposed. Linear opinion pool (see
Sect. 2) is a particular case for which optimal solutions have been derived. We
consider here the general constrained MLR model and show how optimal so-
lutions can be obtained by solving nonlinear programming problems. We give
some arguments characterizing cases where our approach should be preferred to
existing alternatives. We first introduce in Sect. 2 the general multivariate linear
regression model. Sect. 3 deals with the optimal solutions and their properties.
Sect. 4 presents experimental results on a difficult problem. Sect. 5 is devoted to
a comparison with nonlinear techniques.

2 Multivariate Linear Regression for Combination

Let us consider a @-category discrimination problem and P classifiers whose
outputs are estimated class posterior probabilities (i.e. they are positive and sum



to one). Let f; denote the function computed by the j** classifier and fjx(x) its
k*" output which approximates p(Cy|z). The general multivariate approach to
classifier combination corresponds to the following problem:

Problem 1 Given a convex cost function J, find the best regression function g,

9(@) = [g1(2) ... gi(@) ... go(@)]" with gr(z) = F(z)vr, (1 <k < Q) F(z) =
@) T fi@)T o fe(2)T], vk = [Vki1 - - Vkim - - - vipg| T, which takes its val-

UES 1N o
U:{uele/Zuzczl} 1)

k=1

The outputs of the combiner g are linear combinations of all classifier outputs.
They are constrained to be non-negative and sum to one. Linear opinion pool
is a degenerate case for which g(z) = Zif v; fj(z). Coefficients v; are scalars.
In this case, constraints are satisfied if and only if the combination is convex.
In [5], the authors also consider the general MLR model. They propose to de-
termine separately the optimal regression functions g for each class, by solving
@ separate constrained quadratic programming problems. The outputs are then
standardized so that they sum to unity: gi(z) = gx(x)/ Eﬁi? g1(x). However,
this two-step procedure is suboptimal with respect to the optimization criterion.

3 Optimal Solutions

Let us express formally the constraints. Let v = [vf ... o[ ... v}5]" denote the
vector of parameters, and vy; = min,, Vgm, (1 <k < Q), (1 <1 < P). There are
two constraints: outputs must be non-negative and sum to one. Non-negativity
is expressed as:
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These constraints correspond to QF+! linear inequations.
Summation to unity is equivalent to:
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The number of inequality constraints in Ct; makes the resolution of the
convex programming problem prohibitive. However, we established in [3] the
following result, which shows that inequalities in Ct; may be replaced by more
restrictive but simpler constraints.

Proposition 1 An optimal solution to Problem 1 is obtained by solving the
following problem:



Problem 2

min J(v)
v E IRiQ2

subject to
/ { (Cta)

This simplification allows to handle the general optimization problem using clas-
sical algorithms such as the gradient projection method [6].

Either quadratic loss or entropic cost function may be used as training crite-
rion J. The following result holds: every local solution to a convex programming
problem is a global solution. Although cross-entropy should be preferred for
classification, there is practically no difference for performance. The quadratic
programming problem is easier to handle analytically and several properties can
be derived which do not hold anymore for the entropic cost. An interesting prop-
erty is the characterization of conditions for unicity of the solution. In the general
case, there is a convex set of optimal solutions to Problem 2. They may be not
equivalent for generalization. It is thus important to know whether the solution
which has been obtained is unique or not. The following proposition allows to
characterize this unicity a posteriori, i.e. when a solution has been obtained.

Proposition 2 A necessary and sufficient condition for a solution © to Problem
2 with a quadratic cost function to be unique is: V(k,1)05, = min,, Ogim = 0.

A sketch of the proof is given in Appendix 1. Conditions in proposition 2 are
often met in practice. The Kuhn-Tucker conditions may be used to characterize
unicity a priori, before any solution has been found. For lack of place, we will
not develop this topic further here.

4 Experiments

To assess our combiner, we have chosen the open problem of protein secondary
structure prediction. This is a 3-class classification task which consists in as-
signing a conformation a-helix, G-strand or coil, to each residue of a sequence.
The classifiers used are the neural architecture and statistical model in [4], with
the nearest-neighbours algorithm of [10]. We have compared our optimal solu-
tion to other combiners: a single hidden layer neural network (MLP), a logis-
tic regression model and an optimal convex combination. The training of the
MLR model, both for the quadratic and the cross-entropic cost functions, was
performed with the gradient projection method. We chose the same set of 126
protein chains which was selected to assess the system PHD [8]. However, base
sequences were substituted to the profiles of the multiple alignments. The base is
divided into seven subsets. This splitting was retained to implement a two-stage
cross-validation procedure. A variation of Stacked Generalization [9] is used to
avoid the generation of biased estimates, and every subset constitutes iteratively
the test set. Table 1 summarizes the observed performance.

MLR compares favourably with existing methods. The subsequent 0.7% in-
crease in recognition rate is significant for this task.



Table 1. Relative average performance of ensemble methods

Combiner Recognition rate
MLR cross-entropy 66.5
MLR quadratic loss 66.3
convex average 65.7
MLP 65.8
Logistic regression 65.7

5 Comparison with Nonlinear Methods

The superiority of linear combiners over nonlinear ones, a phenomenon often ob-
served in practice, has two explanations. Data set sizes are frequently too small
with respect to the number of parameters of ordinary nonlinear models. More-
over, these models are less suited than linear ones in many cases. We illustrate
this point by means of a particular example. We consider the logistic regression
model [2]. Tt is identical to the single layer perceptron with softmaz nonlinearity:

ehk(2)
gk(z) = W (2)

where the h; are affine combinations of the predictors. This model, which com-
putes a linear discriminant function, performs worse than a simple optimal con-
vex conbination for the problem described below.

Let us consider a classification problem with two classes and two classifiers. We
assume that the true posterior probabilities are given by:

p(Cilz) = 0f11(x) + (1 = 0) far(z) (3)

with 6 €]0,1[. ¢t = fi1(x) and u = fo1(x) are supposed to be independently
uniformly distributed on [0, 1]. Let ¢ be the logistic regression function which
maximizes the expectation of the log-likelihood function. Founding ¢ is equiva-
lent to minimizing with respect to v the functional:

1 1
J@w) = - / / p(Cult, w)in(g(t, ) + (1 — p(Cilt,w))in(1 — glt, u))dtdu (4)

We will show that ¢ does not allow to determine the true bayesian decision
boundary. With no loss of generality, we can restrict the family of functions
considered to: 1

A — (5)

1+ exp(—k(0t + (1 —0)u— 3))

0 €]0,1[, £ > 0. The true boundary will be found if and only if 6 = 6. We

demonstrate that the resulting value of 0 is actually different from 6, provided

0 +# % Proof: see Appendix 2. Simulation results are displayed in Figure 1. For

symmetry reasons, the study has been restricted to values of 6 superior to 0.5.
The slight discrepancy between 8 and the estimate of 0 can be easily observed.

g(t,u) =
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Fig. 1. Empirical estimate of § as a function of 6

6 Discussion

We have established how the standard multivariate linear regression model could
be constrained in order to improve the estimates of the posterior probabilities
of classes generated by a set of experts. The problem has been solved as a
nonlinear programming problem. The linear regression approach presents several
advantages. Training can be adapted to take into account complexity control.
From this viewpoint, optimization methods that use the active set method and
produce, at each step of the training phase, a feasible point, such as the gradient
projection method, are of particular interest. We are currently studying these
properties with the objective to improve performance in generalization.
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7 Appendix 1

Let Z = {(zi,y:)}, (1 <i < N) be the training sample. F/(X) denotes the matrix
of explanatory variables (its lines are the vectors F(z;)). A is a block-diagonal
matrix with @ identical blocks equal to & F(X)TF(X). Let Yy = [yu] € R",
(1<k<Q)and b= L [YF(X)...Y/TF(X)... YQTF(X)]T. The sample-based
estimate of J(v) is then:
J(w) = %UTAU —bvTw + é (6)
A base of F(X)TF(X) kernel is given by the set of vectors w;, (1 < j < P —1):
wj = (15, —6;115, ..., —0;p—115]" (7)

where 1¢ is a column vector of @ ones. Ker(A) = (Ker(F(X)TF(X)))?. The
following lemma holds:

Lemmal. If o and © + w are optimal solutions to Problem 2 with J being the
mean squared error, then w € Ker(A).

The proof relies on the following argument:
J(6+w) = J(0) = éwTAw 4 (A0 —b)Tw=0= we Ker(A) (8)

From (7), it is clear that if condition in proposition 2 holds, any point ¥ +w with
w € Ker(A) \ {0} will have negative components and so will not be a feasible
solution. This ensures the unicity of the optimal solution.

8 Appendix 2

The objective function is equal to:

—/ / In(g(t, u))dtdu — 1%((29 SDI+A-0) (9
0 0

Assuming the optimum is obtained for 6 = 6 is equivalent to solving for k:

aJ
{8 s (10)

After some algebra, system (10) is shown to be equivalent to:

Jo (1 = 22)In(cosh(5 (02 — 1)))dz = 200
{ fg 1 —22)In(cosh(E((1 - 8)z — 1)))dz = 200 (11)
Let hy(z) = (1-22)In(cosh(£(02—13))), ha(z) = (1-22)In(cosh(4((1-0)z—1))).

(0, k, 2) €)0.5,1[x]0, +00[x]0.5, 1[, h1(2) + A1 (1 — 2) > ha(2) + ha(1 — 2) (12)

The integrals have different values for 6 # % — system (10) has no solution. O



