Skip to main content

Optimal linear regression on classifier outputs

  • Part III: Learning: Theory and Algorithms
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

We consider the combination of the outputs of several classifiers trained independently for the same discrimination task. We introduce new results which provide optimal solutions in the case of linear combinations. We compare our solutions to existing ensemble methods and characterize situations where our approach should be preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, J.M. and Granger, C.W.J. (1969): The Combination of Forecasts. Operational Research Quaterly, Vol. 20, 451–468.

    Google Scholar 

  2. Bishop, C.M. (1995): Neural Networks for Pattern Recognition, Clarendon Press, Oxford.

    Google Scholar 

  3. Guermeur, Y., d'Alché-Buc, F. and Gallinari, P. (1997): Combinaison Linéaire Optimale de Classifieurs. XXIX-ièmes Journées de Statistique, 425–428.

    Google Scholar 

  4. Guermeur, Y. and Gallinari, P. (1996): Combining Statistical Models for Protein Secondary Structure Prediction. ICANN'96, Bochum, 599–604.

    Google Scholar 

  5. LeBlanc, M. and Tibshirani, R. (1993): Combining estimates in regression and classification. Technical Report 9318, Department of Preventive Medicine and Biostatistics and Department of Statistics, University of Toronto.

    Google Scholar 

  6. Rosen, J.B. (1960): The Gradient Projection Method for Nonlinear Programming. Part 1. Linear Constraints. J. Soc. Indust. Appl. Math., Vol. 8, N o 1, 181–217.

    Google Scholar 

  7. Perrone, M.P. and Cooper, L.N. (1993): When Networks Disagree: Ensemble Methods for Hybrid Neural Networks. Technical Report, Institute for Brain and Neural Systems, Brown University, Providence, Rhode Island.

    Google Scholar 

  8. Rost, B. and Sander, C. (1993): Prediction of Protein Secondary Structure at Better than 70% Accuracy. J. Mol. Biol., 232, 584–599.

    Google Scholar 

  9. Wolpert, D.H. (1992): Stacked Generalization. Neural Networks, Vol. 5, 241–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guermeur, Y., d'Alché-Buc, F., Gallinari, P. (1997). Optimal linear regression on classifier outputs. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020201

Download citation

  • DOI: https://doi.org/10.1007/BFb0020201

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics