Skip to main content

Learning verification in multilayer neural networks

  • Part III: Learning: Theory and Algorithms
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

  • 78 Accesses

Abstract

In this paper, we address the difficult problem of the learning verification in multilayer neural networks. Finding the activation/inhibition power of each input feature allows us to build synthetic examples and then to find out the minimal recognized patterns as long as to evaluate the robustness of the system. A small illustration upon character recognition clearly shows the interest in bias reduction. A real world application of transients recognition in underwater acoustic helped us to build more efficient features and to significantly improve the generalization rates.

This work has been granted by DCN Ingénierie Sud/LSM under contract C 95 50 638 000

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ezhov A.A. & Vvedensky V.L.: Object generation with neural networks. Neural Networks, vol.9, no9, pp.1491–1495, dec96.

    Google Scholar 

  2. Fechner T. & Hinze A.: Delta Analysis: a method for the determination of input feature significance in neural networks. NeuroNîmes'93, pp.393–398, Nimes, France.

    Google Scholar 

  3. Nocera P. & Quélavoine R.: Diminishing the number of nodes in multilayered neural networks. ICNN'94, vol.7, pp.4421–4424, 28jun–2jul94, Orlando, FL.

    Google Scholar 

  4. Oppizzi O. & Quélavoine R.: Rescoring under fuzzy degrees with a multilayered neural network in a rule-based speech recognition system. ICASSP'97, 21–24apr97, Munchen, Germany.

    Google Scholar 

  5. Quélavoine R., Nocera P. & Di Martino M.: Multilayered neural networks and errors in learning corpus. WCNN'96, pp.287–290, 16–18sep96, San Diego, CA.

    Google Scholar 

  6. Quélavoine R.: Étude de l'apprentissage et des structures des rseaux de neurones multicouches pour l'analyse de données.. Thesis, 116p., 13jan97, University of Avignon, France.

    Google Scholar 

  7. Yoda M., Baba K. & Enbutu I.: Explicit representation of knowledge acquired from plant historical data using neural networks IJCNN'91, vol.3, pp.155–160, San Diego, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quélavoine, R., Nocera, P. (1997). Learning verification in multilayer neural networks. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020202

Download citation

  • DOI: https://doi.org/10.1007/BFb0020202

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics