Skip to main content

Mixtures of experts estimate a posteriori probabilities

  • Part III: Learning: Theory and Algorithms
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

The mixtures of experts (ME) model offers a modular structure suitable for a divide-and-conquer approach to pattern recognition. It has a probabilistic interpretation in terms of a mixture model, which forms the basis for the error function associated with MEs. In this paper, it is shown that for classification problems the minimization of this ME error function leads to ME outputs estimating the a posteriori probabilities of class membership of the input vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, 1995.

    Google Scholar 

  2. H. Bourlard and N. Morgan. Links between Markov models and multi-layer perceptrons. In D. S. Touretzky, editor, Advances in Neural Information Processing, volume 1, pages 502–510, San Mateo CA, 1989. Morgan Kaufmann.

    Google Scholar 

  3. J. S. Bridle. Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition. In F. Fogelman Soulié and J. Hérault, editors, Neurocomputing: Algorithms, Architectures, and Applications, pages 227–236. Springer Verlag, New York, 1990.

    Google Scholar 

  4. Jürgen Fritsch, Michael Finke, and Alex Waibel. Context-dependent hybrid HME/HMM speech recognition using polyphone clustering decision trees. In Proceedings of ICASSP-97, 1997.

    Google Scholar 

  5. Mariano Giaquinta and Stefan Hildebrandt. Calculus of Variations. Springer Verlag, Berlin, 1996.

    Google Scholar 

  6. Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3(1):79–87, 1991.

    Google Scholar 

  7. Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6(2):181–214, 1994.

    Google Scholar 

  8. S. R. Waterhouse and A. J. Robinson. Classification using hierarchical mixtures of experts. In Proceedings 1994 IEEE Workshop on Neural Networks for Signal Processing, pages 177–186, Long Beach CA, 1994. IEEE Press.

    Google Scholar 

  9. Andreas S. Weigend, Morgan Mangeas, and Ashok N. Srivastava. Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting. International Journal of Neural Systems, 6:373–399, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moerland, P. (1997). Mixtures of experts estimate a posteriori probabilities. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020204

Download citation

  • DOI: https://doi.org/10.1007/BFb0020204

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics