Abstract
The mixtures of experts (ME) model offers a modular structure suitable for a divide-and-conquer approach to pattern recognition. It has a probabilistic interpretation in terms of a mixture model, which forms the basis for the error function associated with MEs. In this paper, it is shown that for classification problems the minimization of this ME error function leads to ME outputs estimating the a posteriori probabilities of class membership of the input vector.
Preview
Unable to display preview. Download preview PDF.
References
Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, 1995.
H. Bourlard and N. Morgan. Links between Markov models and multi-layer perceptrons. In D. S. Touretzky, editor, Advances in Neural Information Processing, volume 1, pages 502–510, San Mateo CA, 1989. Morgan Kaufmann.
J. S. Bridle. Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition. In F. Fogelman Soulié and J. Hérault, editors, Neurocomputing: Algorithms, Architectures, and Applications, pages 227–236. Springer Verlag, New York, 1990.
Jürgen Fritsch, Michael Finke, and Alex Waibel. Context-dependent hybrid HME/HMM speech recognition using polyphone clustering decision trees. In Proceedings of ICASSP-97, 1997.
Mariano Giaquinta and Stefan Hildebrandt. Calculus of Variations. Springer Verlag, Berlin, 1996.
Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3(1):79–87, 1991.
Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6(2):181–214, 1994.
S. R. Waterhouse and A. J. Robinson. Classification using hierarchical mixtures of experts. In Proceedings 1994 IEEE Workshop on Neural Networks for Signal Processing, pages 177–186, Long Beach CA, 1994. IEEE Press.
Andreas S. Weigend, Morgan Mangeas, and Ashok N. Srivastava. Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting. International Journal of Neural Systems, 6:373–399, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moerland, P. (1997). Mixtures of experts estimate a posteriori probabilities. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020204
Download citation
DOI: https://doi.org/10.1007/BFb0020204
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive