Skip to main content

Neural network based processing for smart sensors arrays

  • Part IV: Signal Processing: Blind Source Separation, Vector Quantization, and Self-Organization
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

Source separation (SS) algorithm is an attractive approach for designing smart sensor array, able to increase spatial selectivity and to cancel spurious sources. The source number being unknown and able to vary, a pre-processing algorithm is developped in this paper for providing estimation of the source number before source separation. On-line source separation is then achieved in the above time variant context.

Ch. Jutten is professor at ISTG of Univ. Joseph Fourier of Grenoble. This project is partly supported by ELESA in cooperation with A. Chovet and A. lonescu of LPCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jutten, C., Hérault, J.: Independent components analysis (INCA) versus principal components analysis. EUSIPCO'88, 643–646

    Google Scholar 

  2. Comon, P.: Independent Component analysis — a new concept?. Signal processing, vol.36, (1994), 287–314

    Google Scholar 

  3. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation, vol.7, (1995), 1129–1159

    Google Scholar 

  4. Oja, E., Karhunen, J., Hyvärinen, A.: From neural PCA to neural ICA. NISP'96 Postconference Workshop on Blind Signal Processing and Their Applications, Snow-mass, Colorado (1996)

    Google Scholar 

  5. Yang, B.: An extension of the PASTd algorithm to both rank and subspace tracking. IEEE Signal Processing Letters, vol.2, no.9, (1995), 179–182

    Google Scholar 

  6. Stoica, P., Söderström, T., Šimonnytè, V.: On estimating the noise power in array processing, Signal Processing, vol.26, no. 2, (1992), 205–221

    Google Scholar 

  7. Anderson, T. W.: Asymptotic theory for principal component analysis. Ann. J. Math. Stat., vol.34, (1963), 122–148

    Google Scholar 

  8. Scharf, L.:Statistical Signal Processing

    Google Scholar 

  9. Cardoso, J. F., Laheld, B.: Equivariant adaptive source separation. IEEE Tran. on Signal Processing, vol.44, no.12, (1996), 3017–3031

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paraschiv-Ionescu, A., Jutten, C., Bouvier, G. (1997). Neural network based processing for smart sensors arrays. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020214

Download citation

  • DOI: https://doi.org/10.1007/BFb0020214

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics