Skip to main content

Kernel principal component analysis

  • Part IV: Signal Processing: Blind Source Separation Vector Quantization, and Self-Organization
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d-pixel products in images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. A. Aizerman, E. M. Braverman, & L. I. Rozonoér. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.

    Google Scholar 

  • B. E. Boser, I. M. Guyon, & V Vapnik. A training algorithm for optimal margin classifiers. In Fifth Annual Workshop on COLT, Pittsburgh, 1992. ACM.

    Google Scholar 

  • C. Cortes & V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

    Google Scholar 

  • T. Hastie & W. Stuetzle. Principal curves. JASA, 84:502–516, 1989.

    Google Scholar 

  • M. Kirby & L. Sirovich. Application of the Karhunen-Loève procedure for the characterization of human faces. IEEE Transactions, PAMI-12(1):103–108, 1990.

    Google Scholar 

  • E. Oja. A simplified neuron model as a principal component analyzer. J. Math. Biology, 15:267–273, 1982.

    Google Scholar 

  • B. Schölkopf, C. Burges, & V. Vapnik. Extracting support data for a given task. In U. M. Fayyad & R. Uthurusamy, eds., Proceedings, First International Conference on Knowledge Discovery & Data Mining, Menlo Park, CA, 1995. AAAI Press.

    Google Scholar 

  • B. Schölkopf, C. Burges, & V. Vapnik.Incorporating invariances in support vector learning machines. In C. v. d. Malsburg, W. v. Seelen, J. C. Vorbrüggen, & B. Sendhoff, eds., ICANN'96, p. 47–52, Berlin, 1996. Springer LNCS Vol. 1112.

    Google Scholar 

  • B. Schölkopf, A. J. Smola, & K.-R. Müller Nonlinear component analysis as a kernel eigenvalue problem. Technical Report 44, Max-Planck-Institut fur biologische Kybernetik, 1996. Submitted to Neural Computation.

    Google Scholar 

  • P. Simard, Y. LeCun. & J. Denker. Efficient pattern recognition using a new transformation distance. In S. J. Hanson, J. D. Cowan, & C. L. Giles, editors, Advances in NIPS 5, San Mateo, CA, 1993. Morgan Kaufmann.

    Google Scholar 

  • V. Vapnik & A. Chervonenkis. Theory of Pattern Recognition [in Russian]. Nauka, Moscow, 1974. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schölkopf, B., Smola, A., Müller, KR. (1997). Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020217

Download citation

  • DOI: https://doi.org/10.1007/BFb0020217

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics