Abstract
Visualization is an important part of data analysis, especially when exploring multidimensional data. Our approach uses the selforganizing map (SOM) as a basic method because it provides a good basis for data visualization. The developed analysis tool utilizes the structure of SOM and is integrated with a generally applicable visualization system. In addition, we propose a model to link several SOM presentations for visualizing more complex structures of information.
This work was supported by TEKES under Stella project.
Preview
Unable to display preview. Download preview PDF.
References
Martin del Brio Bonafacio and Serrano-Cinca Carlos. Self-organizing neural networks for the analysis and represenation of data: Some financial cases. Neural Computing & Applications, 1:193–206, 1993.
Erkki Häkkinen and Pasi Koikkalainen. The neural data analysis environment. To be published in WSOM'97, 1997.
Teuvo Kohonen. Self-organizing formation of topologically correct feature maps. Biological Cybernetics, 43(1):59–69, 1982.
Teuvo Kohonen. Self-Organizing Maps, volume 30. Springer,Berlin, Heidelberg, New York, 1995.
Pasi Koikkalainen. Progress with the tree-structured self-organizing map. In A. G. Cohn, editor, Proc. ECAI'9l, 11th European Conf. on Artificial Intelligence, pages 211–215, New York, 1994. John Wiley & Sons.
Matthew B. Miles and A. Michael Huberman. Qualitative Data Analysis. SAGE Pubblications, CA, USA, 1994.
Edward R. Tufte. The visual Display of Quantitative Information. Graphic Press, USA, 1983.
A. Ultsch. Self-organizing Neural Networks for Visualization and Classification, pages 307–313. Springer-Verlag, Berlin, 1993.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Häkkinen, E., Koikkalainen, P. (1997). SOM based visualization in data analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020220
Download citation
DOI: https://doi.org/10.1007/BFb0020220
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive