Skip to main content

Self-organizing maps for robot control

  • Part V: Robotics, Adaptive Autonomous Agents, and Control
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

Many tasks in robotics are difficult to tackle with explicit models, based on “first principles”. Consequently, neural networks with their inherent learning ability can offer feasible alternatives to more traditional approaches. Focusing on neural network approaches that have been derived from the Self-Organizing Map, we review several examples, how such networks can contribute to the solution of typical tasks in robotics, such as map building, object recognition and, in particular, the coordination of multi-joint movements. We argue, that a frequent common structure is a “continuous associative memory” for the flexible representation of continuous relations between degrees of freedom, and show how such representation can be obtained with a parametrized Self-organizing Map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein C.A., Huang C-H.: Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators. IEEE Trans. Sys. Man and Cybern. SMC-13, (1983) 245–250.

    Google Scholar 

  2. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, Cambridge University Press (1990).

    Google Scholar 

  3. Hunt K.J., Sbarbaro D., Zbikowski R., Gawthrop P.J.: Neural Networks for Control Systems: A Survey. Automatica 28 (1992) 1083ff.

    Google Scholar 

  4. Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-organizing Maps, Addison-Wesley, Reading, MA. (1992)

    Google Scholar 

  5. Kurz A.: Building Maps for Path Planning and Navigation Using Learning Classification of External Sensor Data. In: Artificial Neural Networks 2 (I. Aleksander and J. Taylor eds.), (1992) 587–590, Elsevier Science Publishers.

    Google Scholar 

  6. Vleugels J.M., Kok J.N., Overmars M.H.: A self-organizing neural network for robot motion planning. In: ICANN 93 Art. Neural Networks Conf. Proc. (S. Gielen and B. Kappen eds.), (1993) 281–284, Springer Berlin Heidelberg.

    Google Scholar 

  7. Ritter, H. Parametrized Self-Organizing Maps. ICANN 93 Proceedings (S.Gielen and B.Kappen eds.), (1993) 268–273, Springer Berlin Heidelberg.

    Google Scholar 

  8. Kröse B.J.A., Eecen M.: Self-learning maps for path planning in sensor space. In: ICANN 94 Art. Neural Networks Conf. Proc. (M. Marinaro and P.G. Morasso eds.), (1994) 1303–1306, Springer Berlin Heidelberg

    Google Scholar 

  9. Wood J.: Invariant Pattern Recognition: A Review. Pattern Recognition 29, (1996) 1–17

    Google Scholar 

  10. Walter, J., Ritter, H., Investment Learning with Hierarchical PSOM. In: Advances in Neural Information Processing Systems 8 (D. Touretzky, M. Mozer and M. Hasselmo eds.), (1996) 570–576, MIT Press.

    Google Scholar 

  11. Walter J.: Rapid Learning in Robotics. Cuvillier Verlag Göttingen 1996.

    Google Scholar 

  12. Walter, J., Ritter, H., Rapid Learning with Parametrized Self-organizing Maps. Neurocomputing 12, (1996) 131–153

    Google Scholar 

  13. Heidemann G., Ritter H.: A Neural 3-D Object Recognition Architecture Using Optimized Gabor Filters. Proc. 13th Int. Conf. Patt. Recog., Vol. IV, (1996) 70–74, IEEE Computer Society Press.

    Google Scholar 

  14. Littmann E., Drees A., Ritter H.: Neural Recognition of Human Pointing Gestures in Real Images. Neural Processing Letters (1996) 61–71, Kluwer Academic Publishers.

    Google Scholar 

  15. Heidemann G., Ritter H.: A neural recognition architecture for composed objects. DAGM Symposium Mustererkennung (B. Jähne, P. Gei\ler, H. Hau\ecker, F. Hering eds.), (1996) 475–482, Springer Verlag Berlin Heidelberg.

    Google Scholar 

  16. Heidemann, G., Kummert F., Ritter H., Sagerer G.: A Hybrid Object Recognition Architecture, ICANN 96, Springer Lecture Notes in Computer Science 1112, (1996) 305–310. Springer Berlin Heidelberg.

    Google Scholar 

  17. Heidemann, G., Nattkemper T., Menkhaus G., Ritter H.: Blicksteuerung durch präattentive Fokussierungspunkte. Proceedings in Artificial Intelligence (B. Mertsching ed.) (1996) 109–116 Springer Verlag (in German).

    Google Scholar 

  18. Kohonen, T.: Self-Organizing Maps, Springer Series in Information Sciences, Springer Berlin Heidelberg 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ritter, H. (1997). Self-organizing maps for robot control. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020232

Download citation

  • DOI: https://doi.org/10.1007/BFb0020232

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics