Skip to main content

Modeling obstacle avoidance behavior of flies using an adaptive autonomous agent

  • Part V: Robotics, Adaptive Autonomous Agents, and Control
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

  • 292 Accesses

Abstract

In the course of evolution flies have developed specialized visuomotor programs for tasks like compensating for course deviations, obstacle avoidance, and tracking, which are based on the analysis of visual motion information. In order to test models of the obstacle avoidance behavior in flies, we use computer-simulated agents that evolve parts of their sensor system and sensorimotor coupling with genetic algorithms. During a simulated evolution, these agents specialize a visuomotor program that enables the agents to avoid obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. S. Collett (1980). Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J. of Comp. Physiol. A. 140:145–158.

    Google Scholar 

  2. M. Egelhaaf, A. Borst. W. Reichardt (1989). Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. J. Opt. Soc. Am. A, 6(7):1070–1087.

    Google Scholar 

  3. D. J. Field (1987). Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A, 4(12):2379–2394.

    Google Scholar 

  4. N. Franceschini, J. M. Pichon, C. Blanes, (1992). From insect. vision to robot vision. Phil. Trans. Royal Soc. Lond. B, 337:283–294.

    Google Scholar 

  5. K. G. Götz (1964). Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik, 2(2):77–92.

    Google Scholar 

  6. K. G. Götz (1980). Visual guidance in Drosophila. In: O. Siddiqi. P. Babu. L. M. Hall, J. C. Hall (eds.), Development and neurobiology of Drosophila. Plenum Publishing Corp., NY.

    Google Scholar 

  7. B. Hassenstein, W. Reichardt (1956). Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung, llb:513–524.

    Google Scholar 

  8. K. Hausen (1982). Motion sensitive interneurons in the optomotor system of the fly. Biological Cybernetics, 46:67–79.

    Google Scholar 

  9. S. A. Huber, H. A. Mallot, H. H. Büllthoff (1996). Using Evolutionary Algorithms for the Optimization of the Sensorimotor Control in an Autonomous Agent. Proc. 6th Int. Conf. IPMU, Granada/Spain, 1241–1246.

    Google Scholar 

  10. H. G. Krapp, R. Hengstenberg (1996). Estimation of self-motion by optic flow processing in single visual interneurons. Nature, 384:463–466.

    Google Scholar 

  11. S. B. Laughlin (1987). Form and function in retinal processing. Trends in Neurosciences, 10(11):478–483.

    Google Scholar 

  12. W. Reichardt, T. Poggio (1976). Visual control of orientation behavior in the fly. Part 1: A quantitative analysis. Quarterly Reviews of Biophysics. 9(3):311–375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huber, S.A., Bülthoff, H.H. (1997). Modeling obstacle avoidance behavior of flies using an adaptive autonomous agent. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020237

Download citation

  • DOI: https://doi.org/10.1007/BFb0020237

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics