Skip to main content

Incremental acquisition of local networks for the control of autonomous robots

  • Part V: Robotics, Adaptive Autonomous Agents, and Control
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

This paper proposes an incremental learning approach to control autonomous robots based on local networks. This approach integrates different learning techniques in a conceptually simple architecture. The robot does not learn from scratch, but uses two types of bias: builtin reflexes (domain knowledge) and advice. The robot adds a new unit to the neural network whenever it uses the reflexes or receives an advice. This unit is integrated into a topology preserving map and associates a region around the current situation to either the computed reflex or the advice. The resulting reaction rule is then tuned by means of reinforcement learning and self-organizing rules. Experimental results show that the robot TESEO rapidly learns suitable behavioral strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barto, A., Sutton, R., & Anderson, C. (1983). IEEE Trans. SMC, 13:835–846.

    Google Scholar 

  2. Clouse, J.A. & Utgoff, P.E. (1992). 9th Int. Conf. on Machine Learning.

    Google Scholar 

  3. Dayan, P. & Sejnowski, T.J. (1994). Machine Learning, 14:295–301.

    Google Scholar 

  4. Fritzke, B. (1995). Advances in Neural Information Processing Systems 7.

    Google Scholar 

  5. Gordon, G.J. (1995). 12th Int. Conf. on Machine Learning.

    Google Scholar 

  6. Maclin, R. & Shavlik, J.W. (1996). Machine Learning, 22:251–281.

    Google Scholar 

  7. McCallum, R.A. (1996). IEEE Trans. SMC—Part B, 26:464–473.

    Google Scholar 

  8. Millán, J. del R. (1996). IEEE Trans. SMC—Part B, 26:408–420.

    Google Scholar 

  9. Millán, J. del R. & Heikkonen, J. (1996). Working paper, March.

    Google Scholar 

  10. Singh, S.P. & Sutton, R.S. (1996). Machine Learning, 22:123–158.

    Google Scholar 

  11. Sutton, R.S. (1988). Machine Learning, 3:9–44.

    Google Scholar 

  12. Sutton, R.S. (1996). Advances in Neural Information Processing Systems 8.

    Google Scholar 

  13. Tsitsiklis, J.N. & Van Roy, B. (1996). Machine Learning, 22:59–94.

    Google Scholar 

  14. Varsta, M., Heikkonen, J., & Millán, J. (1997). Workshop on Self-Organizing Maps.

    Google Scholar 

  15. Watkins, C.J.C.H. (1989). Ph.D. Thesis, Cambridge University, England.

    Google Scholar 

  16. Williams, R.J. (1992). Machine Learning, 8:229–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

del R. Millân, J. (1997). Incremental acquisition of local networks for the control of autonomous robots. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020242

Download citation

  • DOI: https://doi.org/10.1007/BFb0020242

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics