Skip to main content

Force feedback control of an assembly robot by neural networks

  • Part V: Robotics, Adaptive Autonomous Agents, and Control
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

  • 118 Accesses

Abstract

This paper presents the control of a non linear dynamic system by a neural network controller. This approach based on a feedforward neural network doesn't need any mathematical model of the system. The architecture and the stability of this controller are first analyzed, then an implementation on a flexible assembly cell including a parallel robot is presented. Experimental results of a peg in a hole insertion task show that the proposed hybrid neural controller exhibits better perfomances than the classical external hybrid force position controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Y. Amirat. Contribution à la commande de haut niveau de processus robotisés et à l'utilisation des concepts de VIA dans l'interaction robot-environnement. PhD thesis, University Paris XII, 22 January 1996.

    Google Scholar 

  2. P. Antsakis. Neural networks in control systems. IEEE Control Syst. Mag., 10:3–5, 1990.

    Google Scholar 

  3. A. G. Barto and P. Anandan. Pattern recognizing stochastic learning automata. IEEE Transaction on Systems, Man, and Cybernetics, 15:360–375, 1985.

    Google Scholar 

  4. O. Khatib. A unified approach to motion and force control of robot manipulators. IEEE J. Robot Automation, 1(3):43–53, 1987.

    Google Scholar 

  5. V. Perdereau. Contribution à la commande hybride force-position. Master's thesis, University Paris VI, 18 Feb 1991.

    Google Scholar 

  6. M. H. Raibert and J. J. Craig. Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control, 102:126–133, 1982.

    Google Scholar 

  7. N. Saadia, Y. Amirat, J. Pontnau, and N. K. M'Sirdi. Experimental comparison between external force position controller and new hybrid neural networks controller. ECPD'97., page In press, September 15–17 1997.

    Google Scholar 

  8. N. Saadia, Y. Amirat, J. Pontnau, and A. Ramdane-Cherif. Hybrid force position control of nonlinear systems using neural networks. The sec. ECPD int. Conf. on Adv. rob. Int. Aut. and Act. Sys., pages 68–73, September 26–28 1996.

    Google Scholar 

  9. K. Watanabe, T. Fukuda, and S. J. Tzafestas. An adaptative control for carma systems using linear neural networks. Int. J. Control, 56:483–497, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saadia, N., Amirat, Y., Pontnau, J., Ramdane-Cherif, A. (1997). Force feedback control of an assembly robot by neural networks. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020249

Download citation

  • DOI: https://doi.org/10.1007/BFb0020249

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics