Skip to main content

Development of shape primitives from images of composite objects represented by complex cells

  • Part VI: Speech, Vision, and Pattern Recognition
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

  • 81 Accesses

Abstract

Visual primitives have long been proposed, under the name of geons or generalized cylinders, as components for object models in the brain and in the computer. Geons constitute a structural level intermediate between features and whole objects, and can form a basis for powerful generalization between different view points. We here present a system for the extraction of geon models from images of composite objects. We use synthetic gray-level images, each composed of several shape primitives. Our system finds geons as partial matches between several images. Images and models are represented as arrays of complex cells of Gabor type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. J. Agin, T. O. Binford, Computer Description of Curved Objects, IJCAI (1973), vol. 3, pp. 629–640.

    Google Scholar 

  2. I. Biederman, Psychological Review 94, 115–147 (1987).

    Google Scholar 

  3. R. Nevatia, G. Medioni, International Journal of Computer Vision 20, 1–42 (1996).

    Google Scholar 

  4. M. Zerroug, R. Nevatia, International Journal of Computer Vision 20, 11–42 (1996).

    Google Scholar 

  5. R. Bajcsy, F. Solina, IEEE Transactions, 231–240 (1987).

    Google Scholar 

  6. S. J. Dickinson, A. P. Pentland, A. Rosenfeld, IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 169–193 (1992).

    Google Scholar 

  7. L. Shams, J. Fiser, A Model for Development of Cortical Lateral Connectivities Using Motion Information (1997)

    Google Scholar 

  8. H. A. Ruff, C. J. Kohler, D. L. Haupt, Developmental Psychology 12, 455–459 (1976).

    Google Scholar 

  9. E. S. Spelke, K. Breinlinger, K. Jacobson, A. Phillips, Perception 22, 1483–1501 (1993).

    Google Scholar 

  10. P. J. Kellman, in Visual Perception and Cognition G. D. IN., Eds. Hillsdale (1989), vol. 1, pp. 121–173.

    Google Scholar 

  11. P. J. Kellman, E. S. Spelke, K. R. Short,Child Development 57, 72–86 (1986).

    Google Scholar 

  12. L. Hainline, P. Riddell, J. Grose-Fiser, I. Abramov, Special Issue: Normal and abnormal visual development in infants and children. Behavioral Brain Research 49, 33–50 (1992).

    Google Scholar 

  13. R. Held, E. E. Birch, J. Gwiazda,Stereoacuity of human infants, Natioanl Academy of Sciences USA (1980), vol. 77

    Google Scholar 

  14. L. Wiskott, IR-INI 96-10, Institut fur Neuroinformatik, Ruhr-Universitat Bochum, 44780 Bochum, Germany (1996).

    Google Scholar 

  15. O. Groetenherdt, Master Thesis, Ruhr University, Bochum (1997).

    Google Scholar 

  16. A. Burkhalter, K. L. Bernardo, V. Charles, The Journal Of Neuroscience 13, 1916–1931 (1993).

    Google Scholar 

  17. M. Lades, et al., IEEE Transaction on Computers 42, 300–311 (1993).

    Google Scholar 

  18. L. Wiskott, C. von der Malsburg, Int. J. Pattern Recognition and Artificial Intelligence 7, 935–948 (1993).

    Google Scholar 

  19. L. Wiskott, in Labeled Graphs and Dynamic Link Matching for Face Recognition and Scene Analysis Frankfurt (1996), vol. Band 53, pp. 73–80.

    Google Scholar 

  20. C. von der Malsburg, in The Neural and Molecular Bases of Learning J.-P. Changeux, M. Konishi, Eds. (John Wiley & Sons Limited, 1987) pp. 411–432.

    Google Scholar 

  21. J. E. Hummel, I. Biederman, Psychological Review 99, 480–517 (1992).

    Google Scholar 

  22. T. V. P. Bliss, T. Lomo, Journal of Physiology 232, 331–356 (1973).

    Google Scholar 

  23. A. H. Klopf, The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence (Hemisphere, Washington, DC, 1982).

    Google Scholar 

  24. P. Foldiak, Neural Computataion 3, 194–200 (1991).

    Google Scholar 

  25. L. Wiskott, J.-M. Fellous, N. Krueger, C. von der Malsburg, Face Recognition and gender determination, International Workshop on Automatic Face-and Gesture-Recognition Zurich (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shams, L., von der Malsburg, C. (1997). Development of shape primitives from images of composite objects represented by complex cells. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020266

Download citation

  • DOI: https://doi.org/10.1007/BFb0020266

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics