Skip to main content

Facial feature detection using neural networks

  • Part VI: Speech, Vision, and Pattern Recognition
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

Many human-machine interfaces based on face gestures are strongly user-dependent. We want to overcome this limitation by using common facial features like eyes, nose and mouth for gaze recognition. In a first step an adaptive color histogram segmentation method roughly determines the region of interest including the user's face. Within this region we then use a hierarchical recognition approach to detect the facial features. Our system is based on a what-where neural network architecture and allows a fast and robust recognition rate. In the future we intend to use the conspicuous features for estimation of gaze directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Baluja and D. Pomerleau: “Non-Intrusive Gaze Tracking Using Artificial Neural Networks”. In J.D. Cowan, G. Tesauro and J. Alspector, editors, Advances in Neural Information Processing Systems (NIPS) 6., Morgan Kaufmann Publishers, San Francisco, CA., 1994.

    Google Scholar 

  2. R. Kubisch and H. Ritter: “Erkennung menschlicher Kopfhaltungen mittels künstlicher neuronaler Netze”. In Informatik Aktuell, Mustererkennung 1996, Ed. B. Jähne et. al., Springer-Verlag, Berlin, Heidelberg, 1996, pages 109–117, 1996.

    Google Scholar 

  3. B. Schiele and A. Waibel: “Gaze Tracking Based on Face-Color”. In Int. Workshop on Automatic Face-and Gesture-Recognition, Zurich, Switzerland, June 1995.

    Google Scholar 

  4. A. Gee and R. Cipolla: “Determining the gaze of faces in images”. In Image and Vision Computing Volume 12 Number 10 December 1994, Butterworth-Heinemann Ltd., pages 639–647.

    Google Scholar 

  5. P. Ballard and G.C. Stockman: “Controlloing a Computer via Facial Aspect”. In IEEE Trans. on Systems, Man, and Cybernetics, Vol. 25, No. 4, April 1995, pages 669–677.

    Google Scholar 

  6. A. Drees: “Visuelle Erkennung von Handstellungen mit neuronalen Netzen”. PhD thesis, Universität Bielefeld, Technische Fakultät, September 1995.

    Google Scholar 

  7. M. Turk and A. Pentland: “Eigenfaces for Recognition”. In Journal of Cognitive Neuroscience, Vol. 3 No. 1, pages 71–86, 1997.

    Google Scholar 

  8. A. Pentland, B. Moghaddam, T. Starner and M. Turk: “View-based and modular eigenspaces for face recognition”. In Proc. IEEE Computer Soc. Conf. on Computer Vision and Patt. Recog., 1994, pages 84–91.

    Google Scholar 

  9. H. Ritter: “Learning with the Self-Organizing Map”. In Artificial Neural Networks, Vol. 1, pages 379–384, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Varchmin, A.C., Rae, R., Ritter, H. (1997). Facial feature detection using neural networks. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020276

Download citation

  • DOI: https://doi.org/10.1007/BFb0020276

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics