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Abstract. In this paper, we propose a general approach for fitting and forecasting
the behavior of time-dependent processes.  The only hypothesis on which it is
based is the stationarity of the process dynamics. The approach is clearly non-
parametric, uses no kind of a priori hypothesis on the form of the process and
reveals itself powerful on either deterministic processes (such linear, logarithmic
or sinusoidal ones) or stochastic ones (being able to reproduce even a white
noise). The fields of applications of the proposed methods are time-series
prevision but also risk analysis, allowing to determine the limits between which a
stochastic process will behave on a specific time-horizon.

1. Introduction

The method that we propose in this paper is oriented towards time-series
analysis. Its goal is to capture the dynamics of a process observed through a set of
data to simulate its future behavior. The only hypothesis on which it is based is the
stationarity of process dynamics during the period of analysis. The main features of
our approach are its non-parametric nature (there is no kind of hypothesis about the
specific form of the analyzed process), its ability to incorporate multi-dimensional
times series (presented as vectors) and to cope either with deterministic processes or
noisy ones (even with white noise, as we will show below). The main fields of
application of this approach is, clearly, time-series prevision but also risk analysis,
putting into light the limits into which the analysed process should be contained
during a specific time horizon. The proposed approach certainly has relations with
other non-parametric regression approaches (see for example [9]) but this remains to
be studied.

In the second section of the paper, we present in few words the Kohonen
algorithm, used here as a vector quantization algorithm for the discretization of the
process dynamics. In the third section, we describe the proposed method. In the fourth
one, we show applications to deterministic processes (linear, logarithmic and
sinusoidal), to a white noise and to a stochastic process (well-know in the field of
interest rate structure modelisation).

2. The Kohonen Algorithm

The Kohonen algorithm  [7, 1, 2] is a well-known unsupervised learning
algorithm which produces a map composed by a fixed number of units. A physical



neighborhood relation between the units is defined and for each unit i, Vr(i) represents
the neighborhood with radius r centered at i. Each unit is characterized by a parameter
vector Wi of the same dimension as the input space. After learning, each unit
represents a group of individuals with similar features (this group is named Voronoi
region of the unit). The correspondence between the features and the units (more or
less) respects the input space topology : similar features correspond to the same unit
or to neighboring units. The final map is said to be a self-organized map which
preserves the topology of the input space.

While the asymptotic properties of this algorithm remain partly unknown,
some of its theoretical properties have been demonstrated during the last 10 years.
One of them is of particular interest as regards this paper and concerns its density
approximation property. In [8], the Kohonen algorithm terminating with a 0
neighbour at the end of learning (that is the classical competitive quantization) is
studied. The author shows that the units after learning are a good discrete skeleton for
reconstructing the initial density f, provided that each unit is weighted by the
probability (estimated by the frequency) of its Voronoi region.  In other terms, if y1,
y2,…,yn are the code vectors after learning, and C1, C2,…,Cn the corresponding
Voronoi regions and P the initial probability distribution associate to density f, the
following convergence (in law) is guaranteed:
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when n goes on to infinity, and δ yi
 is a Dirac function on yi. This is equivalent to say

that the empirical measurement defined by units y1, y2,…,yn, weighted by the
probabilities of the associated Voronoi regions, converges (in law) on the initial
probability P. This remarkable propety is true because with zero neighbor, the
Kohonen algorithm is nothing else than an usual Competitive Quantization. But
actually as the classes that we obtain are topologically ordered, the can be represented
in a convenient way and they can be easily grouped if necessary. Moreover, the
convergence is accelerated by the non zero neighbor phases.  For more information on
those theoretical aspects, see [3, 5].

3. Fitting and Forecasting Processes

To fit a particular process, we start from a data matrix composed by observations
of the process at different points in time (each row correspond to a point in time). The
process can be characterized by one or several variables. The initial data matrix,
denoted D, is therefore of order [r x c], where r is the number of observations in time
and c the number of observed variables.

The first step of our approach is, as for a lot of classical time series analysis
methods, to choose a lagging order. The initial data matrix, D, is then modified to
incorporate, for each row, the vector of the observed variables as well as the past
realizations of those ones. The new data matrix, LD, is of order [(r-λ) × (c × λ)],



where λ is the lagging order. Rows of LD are denoted { }nt,t,1t ,...xxx = , where t is

the time index and n ∈ (c × λ).
The LD matrix is then decomposed into a number of homogeneous clusters,

using the Kohonen algorithm (a one dimensional Kohonen map is used). To each unit
of the Kohonen map is associated, after learning, a number of individuals for which
this unit is the winning one. The clusters are formed. For each unit, the mean profile

( ix ) of the attached individuals is calculated. As λ, the choice of the number of
clusters will depend on the features of the analyzed process. The observation of the
homogeneity of the clusters (for example, the Fisher statistics or one of its
multidimensional extensions) obtained after learning is a good indicator.

For each row xt of the LD matrix, the associated deformation is then computed. It

is denoted yt and is obtained by the following calculation : ttt xxy −= +τ , where τ
is a time delay.  On this basis, for each cluster of the LD matrix, a Pi matrix,
composed by the yt corresponding to the xt of the cluster i, is formed.

For each Pi matrix, as for the LD matrix, a decomposition into a number of
homogeneous clusters is realized, once again using the Kohonen algorithm (a one
dimensional Kohonen map is also used). The mean profiles of the formed clusters are

then determined and denoted by jy .

The last step to characterize the analyzed process is to establish the empirical

frequencies of jy  conditionally to ix . They are denoted by ( )ij xyP .

The simulation procedure take the following form :

- choice of a starting point xt (for example, the initial individual in the LD matrix);

- determination of the winning ix  using 
i

it xxArgMin − );

- picking at random an jy  according to the conditional distribution ( )ij xyP ;

- computation of xt+1 by xt +  jy ;

- iteration of the procedure for simulating the dynamics of the process on a specific
time horizon.

For stochastic processes, the procedure will be iterated and the results will be
averaged.

4. Applications

Three applications on deterministic processes are presented. For each one, a
theoretical historic data set is formed by 2.000 individuals. Fig. 1 present the obtained
results in the linear case, fig. 2 for a logarithmic function, fig. 3 for a sinusoidal one.
The application to a Gaussian white noise is presented at fig. 4. The results seem self-
speaking. The parameters used in each simulation are described in tab. 1.
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Fig. 1. : Linear process reproduction and extrapolation
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Fig. 2. : Logarithmic process reproduction and 
extrapolation
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Fig. 3. : Sinusoïdal process reproduction and 
extrapolation

Theoretical Calculated
Mean 0 0.03054305
Stdev 1 0.995597383
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Fig. 4. : Normal distribution reproduction 



Lin. process Log. process Sin. process White noise
Equation yt = 2 + (0.2 x t) yt = ln(t) yt = sin(t) Ν(0,1)
t t = 1 … 2000 t = 1 … 2000

t = (
5

π
) …

(2000 
5

π
)

# clusters for LD 10 30 30 10
# clusters for Pi 10 10 10 10
λλ 1 5 5 1

ττ 1 1 1 1

Tab. 1 : parameters used for simulated processes.

The application of the procedure on a real data set (interest rate structures
evolution over time) has been presented in [4]. We just present here at fig. 5 the
ability of the procedure to reproduce the Cox, Ingersol & Ross [6] dynamic of short
rate interest rate process, described by the following equation :

( ) ( )( ) ( ) ( )tdztródttbratdr +−=
where r(t) is the interest rate at maturity t, σ is the volatility of the process and z(t) is a
standard Wiener process.
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Fig. 5. :Theoretical short Rates produced by 
CIR Model / Simulated short rate on 200 

periods
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